Above and below subgroups of a lattice-ordered group

Author:

Ball Richard N.,Conrad Paul,Darnel Michael

Abstract

In an l l -group G G , this paper defines an l l -subgroup A A to be above an l l -subgroup B B (or B B to be below A A ) if for every integer n n , a A a \in A , and b B b \in B , n ( | a | | b | ) | a | n(|a| \wedge |b|) \leqslant |a| . It is shown that for every l l -subgroup A A , there exists an l l -subgroup B B maximal below A A which is closed, convex, and, if the l l -group G G is normal-valued, unique, and that for every l l -subgroup B B there exists an l l -subgroup A A maximal above B B which is saturated: if 0 = x y 0 = x \wedge y and x + y A x + y \in A , then x A x \in A . Given l l -groups A A and B B , it is shown that every lattice ordering of the splitting extension G = A × B G = A \times B , which extends the lattice orders of A A and B B and makes A A lie above B B , is uniquely determined by a lattice homomorphism π \pi from the lattice of principal convex l l -subgroups of A A into the cardinal summands of B B . This extension is sufficiently general to encompass the cardinal sum of two l l -groups, the lex extension of an l l -group by an o o -group, and the permutation wreath product of two l l -groups. Finally, a characterization is given of those abelian l l -groups G G that split off below: whenever G G is a convex l l -subgroup of an l l -group H H , H H is then a splitting extension of G G by A A for any l l -subgroup A A maximal above G G in H H .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Convergence and Cauchy structures on lattice ordered groups;Ball, Richard N.;Trans. Amer. Math. Soc.,1980

2. The generalized orthocompletion and strongly projectable hull of a lattice ordered group;Ball, Richard N.;Canadian J. Math.,1982

3. \bysame, The structure of the 𝛼-completion of a lattice ordered group, Pacific J. Math. (submitted).

4. Topological lattice-ordered groups;Ball, Richard N.;Pacific J. Math.,1979

5. Groupes archimédiens et hyper-archimédiens;Bigard, Alain,1969

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3