Stability of optimal-order approximation by bivariate splines over arbitrary triangulations

Author:

Chui C. K.,Hong D.,Jia R. Q.

Abstract

Let Δ \Delta be a triangulation of some polygonal domain in R 2 {\mathbb {R}^2} and S k r ( Δ ) S_k^r(\Delta ) , the space of all bivariate C r {C^r} piecewise polynomials of total degree k \leqslant k on Δ \Delta . In this paper, we construct a local basis of some subspace of the space S k r ( Δ ) S_k^r(\Delta ) , where k 3 r + 2 k \geqslant 3r + 2 , that can be used to provide the highest order of approximation, with the property that the approximation constant of this order is independent of the geometry of Δ \Delta with the exception of the smallest angle in the partition. This result is obtained by means of a careful choice of locally supported basis functions which, however, require a very technical proof to justify their stability in optimal-order approximation. A new formulation of smoothness conditions for piecewise polynomials in terms of their B {\text {B}} -net representations is derived for this purpose.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3