Branched circle packings and discrete Blaschke products

Author:

Dubejko Tomasz

Abstract

In this paper we introduce the notion of discrete Blaschke products via circle packing. We first establish necessary and sufficient conditions for the existence of finite branched circle packings. Next, discrete Blaschke products are defined as circle packing maps from univalent circle packings that properly fill D = { z : | z | > 1 } D = \{ z:\left | z \right | > 1\} to the corresponding branched circle packings that properly cover D D . It is verified that such maps have all geometric properties of their classical counterparts. Finally, we show that any classical finite Blaschke product can be approximated uniformly on compacta of D D by discrete ones.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. Discrete convex functions and proof of the six circle conjecture of Fejes Tóth;Bárány, Imre;Canad. J. Math.,1984

2. The uniformization theorem for circle packings;Beardon, Alan F.;Indiana Univ. Math. J.,1990

3. The Schwarz-Pick lemma for circle packings;Beardon, Alan F.;Illinois J. Math.,1991

4. The upper Perron method for labelled complexes with applications to circle packings;Bowers, Philip L.;Math. Proc. Cambridge Philos. Soc.,1993

5. An inverse problem for circle packing and conformal mapping;Carter, Ithiel;Trans. Amer. Math. Soc.,1992

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Branched combinatorial p-th Ricci flows on surfaces;Rendiconti del Circolo Matematico di Palermo Series 2;2022-10-29

2. Branched Combinatorial Calabi Flows on Surfaces;Advances in Applied Mathematics;2022

3. A Circle Pattern Algorithm via Combinatorial Ricci Flows;Trends in Mathematics;2019

4. Circle packing with generalized branching;The Journal of Analysis;2016-12

5. Constructing conformal maps of triangulated surfaces;Journal of Mathematical Analysis and Applications;2012-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3