A geometric approach to regular perturbation theory with an application to hydrodynamics

Author:

Chicone Carmen

Abstract

The Lyapunov-Schmidt reduction technique is used to prove a persistence theorem for fixed points of a parameterized family of maps. This theorem is specialized to give a method for detecting the existence of persistent periodic solutions of perturbed systems of differential equations. In turn, this specialization is applied to prove the existence of many hyperbolic periodic solutions of a steady state solution of Euler’s hydrodynamic partial differential equations. Incidentally, using recent results of S. Friedlander and M. M. Vishik, the existence of hyperbolic periodic orbits implies the steady state solutions of the Eulerian partial differential equation are hydrodynamically unstable. In addition, a class of the steady state solutions of Euler’s equations are shown to exhibit chaos.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. \bysame, Geometric methods in the theory of ordinary differential equations, Springer-Verlag, New York, 1982.

2. Die Grundlehren der mathematischen Wissenschaften, Band 67;Byrd, Paul F.,1971

3. The topology of stationary curl parallel solutions of Euler’s equations;Chicone, Carmen;Israel J. Math.,1981

4. Bifurcations of nonlinear oscillations and frequency entrainment near resonance;Chicone, Carmen;SIAM J. Math. Anal.,1992

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Periodic Orbits of the Perturbed Two- and Three-Body Problems;Galaxies;2023-04-18

2. Beltrami fields and knotted vortex structures in incompressible fluid flows;Bulletin of the London Mathematical Society;2023-01-11

3. Chaos in the incompressible Euler equation on manifolds of high dimension;Inventiones mathematicae;2022-01-20

4. Existence and Stability of Kayaking Orbits for Nematic Liquid Crystals in Simple Shear Flow;Archive for Rational Mechanics and Analysis;2021-09-07

5. How do conservative backbone curves perturb into forced responses? A Melnikov function analysis;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3