Structural properties of the one-dimensional drift-diffusion models for semiconductors

Author:

Alabau Fatiha

Abstract

This paper is devoted to the analysis of the one-dimensional current and voltage drift-diffusion models for arbitrary types of semiconductor devices and under the assumption of vanishing generation recombination. We show in the course of this paper, that these models satisfy structural properties, which are due to the particular form of the coupling of the involved systems. These structural properties allow us to prove an existence and uniqueness result for the solutions of the current driven model together with monotonicity properties with respect to the total current I I , of the electron and hole current densities and of the electric field at the contacts. We also prove analytic dependence of the solutions on I I . These results allow us to establish several qualitative properties of the current voltage characteristic. In particular, we give the nature of the (possible) bifurcation points of this curve, we show that the voltage function is an analytic function of the total current and we characterize the asymptotic behavior of the currents for large voltages. As a consequence, we show that the currents never saturate as the voltage goes to ± \pm \infty , contrary to what was predicted by numerical simulations by M. S. Mock (Compel. 1 (1982), pp. 165–174). We also analyze the drift-diffusion models under the assumption of quasi-neutral approximation. We show, in particular, that the reduced current driven model has at most one solution, but that it does not always have a solution. Then, we compare the full and the reduced voltage driven models and we show that, in general, the quasi-neutral approximation is not accurate for large voltages, even if no saturation phenomenon occurs. Finally, we prove a local existence and uniqueness result for the current driven model in the case of small generation recombination terms.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. F. Alabau. New uniqueness theorems for the one-dimensional drift-diffusion semiconductor device equations. Siam J. Math. Anal., 26:715–737, 1995.

2. F. Alabau. A uniqueness theorem for reverse-biased diodes. To appear in Applicable Anal.

3. F. Alabau. Analyse asymptotique et simulation numérique des équations des semi-conducteurs. PhD thesis, Université Paris 6, 1987.

4. Uniform asymptotic error estimates for semiconductor device and electrochemistry equations;Alabau, Fatiha;Nonlinear Anal.,1990

5. A method for proving uniqueness theorems for the stationary semiconductor device and electrochemistry equations;Alabau, Fatiha;Nonlinear Anal.,1992

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3