An Extension of Lomonosov’s Techniques to Non-compact Operators

Author:

Simonic Aleksander

Abstract

The aim of this work is to generalize Lomonosov’s techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing a connection between the existence of invariant subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a Hilbert space, approximation with Lomonosov functions results in an extended version of Burnside’s Theorem. An application of this theorem to the algebra generated by an essentially self-adjoint operator A A yields the existence of vector states on the space of all polynomials restricted to the essential spectrum of A A . Finally, the invariant subspace problem for compact perturbations of self-adjoint operators acting on a real Hilbert space is translated into an extreme problem and the solution is obtained upon differentiating certain real-valued functions at their extreme.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. Operator Theory: Advances and Applications,1995

2. Graduate Texts in Mathematics;Conway, John B.,1990

3. The Stone-Weierstrass theorem;de Branges, Louis;Proc. Amer. Math. Soc.,1959

4. A construction of invariant subspaces;de Branges, Louis;Math. Nachr.,1993

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Halmos problems and related results in the theory of invariant subspaces;Russian Mathematical Surveys;2018-02

2. Invariant Subspaces for Commuting Operators on a Real Banach Space;Functional Analysis and Its Applications;2018-01

3. Invariant and Almost-Invariant Subspaces for Pairs of Idempotents;Integral Equations and Operator Theory;2015-09-19

4. Weak orbit-transitivity on Hilbert space;Acta Scientiarum Mathematicarum;2010-06

5. Invariant Subspaces for Some Compact Perturbations of Normal Operators;Web Information Systems and Mining;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3