The Morse spectrum of linear flows on vector bundles

Author:

Colonius Fritz,Kliemann Wolfgang

Abstract

For a linear flow Φ \Phi on a vector bundle π : E S \pi : E \rightarrow S a spectrum can be defined in the following way: For a chain recurrent component M \mathcal {M} on the projective bundle P E \mathbb {P} E consider the exponential growth rates associated with (finite time) ( ε , T ) (\varepsilon ,T) -chains in M \mathcal {M} , and define the Morse spectrum Σ M o ( M , Φ ) \Sigma _{Mo}(\mathcal {M},\Phi ) over M \mathcal {M} as the limits of these growth rates as ε 0 \varepsilon \rightarrow 0 and T T \rightarrow \infty . The Morse spectrum Σ M o ( Φ ) \Sigma _{Mo}(\Phi ) of Φ \Phi is then the union over all components M P E \mathcal {M}\subset \mathbb {P}E . This spectrum is a synthesis of the topological approach of Selgrade and Salamon/Zehnder with the spectral concepts based on exponential growth rates, such as the Oseledec̆ spectrum or the dichotomy spectrum of Sacker/Sell. It turns out that Σ M o ( Φ ) \Sigma _{Mo}(\Phi ) contains all Lyapunov exponents of Φ \Phi for arbitrary initial values, and the Σ M o ( M , Φ ) \Sigma _{Mo}(\mathcal {M},\Phi ) are closed intervals, whose boundary points are actually Lyapunov exponents. Using the fact that Φ \Phi is cohomologous to a subflow of a smooth linear flow on a trivial bundle, one can prove integral representations of all Morse and all Lyapunov exponents via smooth ergodic theory. A comparison with other spectral concepts shows that, in general, the Morse spectrum is contained in the topological spectrum and the dichotomy spectrum, but the spectral sets agree if the induced flow on the base space is chain recurrent. However, even in this case, the associated subbundle decompositions of E E may be finer for the Morse spectrum than for the dynamical spectrum. If one can show that the (closure of the) Floquet spectrum (i.e. the Lyapunov spectrum based on periodic trajectories in P E \mathbb {P} E ) agrees with the Morse spectrum, then one obtains equality for the Floquet, the entire Oseledeč, the Lyapunov, and the Morse spectrum. We present an example (flows induced by C C^{\infty } vector fields with hyperbolic chain recurrent components on the projective bundle) where this fact can be shown using a version of Bowen’s Shadowing Lemma.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. Graduate Studies in Mathematics;Akin, Ethan,1993

2. Generic properties of Lyapunov exponents;Arnold, Ludwig;Random Comput. Dynam.,1994

3. Transversality implies structural stability;Bronšteĭn, I. U.;Dokl. Akad. Nauk SSSR,1981

4. [Br2] Bronstein, I.U., Nonautonomous Dynamical Systems (1984), Kishinev (in Russian).

5. Linear extensions that satisfy the Perron condition. I;Bronšteĭn, I. U.;Differentsial\cprime nye Uravneniya,1978

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the global behavior of linear flows;Proceedings of the American Mathematical Society;2022-09-09

2. Spectrum of a nonautonomous dynamics for growth rates;Publicationes Mathematicae Debrecen;2017-07-01

3. Attraction and Lyapunov stability for control systems on vector bundles;Systems & Control Letters;2016-06

4. Lyapunov stability on fiber bundles;Bulletin of the Brazilian Mathematical Society, New Series;2015-06

5. Topological Fiber Entropy for Linear Flows on Vector Bundles;Journal of Dynamical and Control Systems;2014-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3