Congruences between systems of eigenvalues of modular forms

Author:

Jochnowitz Naomi

Abstract

We modify and generalize proofs of Tate and Serre in order to show that there are only a finite number of systems of eigenvalues for the Hecke operators with respect to Γ 0 ( N ) mod l {\Gamma _0}(N)\bmod l . We also summarize results for Γ 1 ( N ) {\Gamma _1}(N) . Using these results, we show that an arbitrary prime divides the discriminant of the classical Hecke ring to a power which grows linearly with k k . In this way, we find a lower bound for the discriminant of the Hecke ring. After limiting ourselves to cusp forms, we also find an upper bound. Lastly we use the constructive nature of Tate and Serre’s result to describe the structure and dimensions of the generalized eigenspaces for the Hecke operators mod l \bmod l .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. N. Bourbaki, Algèbre, Chap. 8.

2. La conjecture de Weil. I;Deligne, Pierre;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1974

3. The basis problem for modular forms and the traces of the Hecke operators;Eichler, M.,1973

4. The index of the Hecke ring, 𝑇_{𝑘}, in the ring of integers of 𝑇_{𝑘}⊗𝑄;Jochnowitz, Naomi;Duke Math. J.,1979

5. A study of the local components of the Hecke algebra mod 𝑙;Jochnowitz, Naomi;Trans. Amer. Math. Soc.,1982

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theta cycles and the Beilinson–Bloch–Kato conjectures;Journal of Number Theory;2024-05

2. Congruence relations for r-colored partitions;Journal of Number Theory;2023-08

3. The theta cycles for modular forms modulo prime powers;Forum Mathematicum;2023-03-31

4. THE EISENSTEIN IDEAL OF WEIGHT k AND RANKS OF HECKE ALGEBRAS;Journal of the Institute of Mathematics of Jussieu;2023-03-31

5. Effect of increasing the ramification on pseudo-deformation rings;Journal de théorie des nombres de Bordeaux;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3