A characterization of semilocal inertial coefficient rings

Author:

Brown W. C.,Ingraham E. C.

Abstract

A commutative ring R R with identity is called an inertial coefficient ring if every finitely generated R R -algebra A A with A / N A/N separable over R R contains a separable subalgebra S S such that S + N = A S + N = A , where N N is the Jacobson radical of A A . Thus inertial coefficient rings are those commutative rings R R for which a generalization of the Wedderburn Principal Theorem holds for suitable R R -algebras. Our purpose is to prove that a commutative ring with only finitely many maximal ideals is an inertial coefficient ring (if and) only if it is a finite direct sum of Hensel rings.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. The Brauer group of a commutative ring;Auslander, Maurice;Trans. Amer. Math. Soc.,1960

2. On maximally central algebras;Azumaya, Gorô;Nagoya Math. J.,1951

3. Strong inertial coefficient rings;Brown, William C.;Michigan Math. J.,1970

4. N. Bourbaki, Algèbre commutative. Chapitres I, II, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.

5. Inertial subalgebras of algebras over commutative rings;Ingraham, Edward C.;Trans. Amer. Math. Soc.,1966

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3