On the procongruence completion of the Teichmüller modular group

Author:

Boggi Marco

Abstract

For 2 g 2 + n > 0 2g-2+n>0 , the Teichmüller modular group Γ g , n \Gamma _{g,n} of a compact Riemann surface of genus g g with n n points removed, S g , n S_{g,n} is the group of homotopy classes of diffeomorphisms of S g , n S_{g,n} which preserve the orientation of S g , n S_{g,n} and a given order of its punctures. Let Π g , n \Pi _{g,n} be the fundamental group of S g , n S_{g,n} , with a given base point, and Π ^ g , n \hat {\Pi }_{g,n} its profinite completion. There is then a natural faithful representation Γ g , n O u t ( Π ^ g , n ) \Gamma _{g,n}\hookrightarrow \mathrm {Out}(\hat {\Pi }_{g,n}) . The procongruence Teichmüller group Γ ˇ g , n \check {\Gamma }_{g,n} is defined to be the closure of the Teichmüller group Γ g , n \Gamma _{g,n} inside the profinite group O u t ( Π ^ g , n ) \mathrm {Out}(\hat {\Pi }_{g,n}) .

In this paper, we begin a systematic study of the procongruence completion Γ ˇ g , n \check {\Gamma }_{g,n} . The set of profinite Dehn twists of Γ ˇ g , n \check {\Gamma }_{g,n} is the closure, inside this group, of the set of Dehn twists of Γ g , n \Gamma _{g,n} . The main technical result of the paper is a parametrization of the set of profinite Dehn twists of Γ ˇ g , n \check {\Gamma }_{g,n} and the subsequent description of their centralizers (Sections 5 and 6). This is the basis for the Grothendieck-Teichmüller Lego with procongruence Teichmüller groups as building blocks.

As an application, in Section 7, we prove that some Galois representations associated to hyperbolic curves over number fields and their moduli spaces are faithful.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Lecture Notes in Mathematics;Abikoff, William,1980

2. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Arbarello, Enrico,2011

3. The faithfulness of the monodromy representations associated with certain families of algebraic curves;Asada, Mamoru;J. Pure Appl. Algebra,2001

4. Galois extensions of a maximal cyclotomic field;Belyĭ, G. V.;Izv. Akad. Nauk SSSR Ser. Mat.,1979

5. The algebraic structure of surface mapping class groups;Birman, Joan S.,1977

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3