Loci of complex polynomials, part I

Author:

Sendov Blagovest,Sendov Hristo

Abstract

The classical Grace theorem states that every circular domain in the complex plane C \mathbb {C} containing the zeros of a polynomial p ( z ) p(z) contains a zero of any of its apolar polynomials. We say that a closed domain Ω C \Omega \subseteq \mathbb {C}^* is a locus of p ( z ) p(z) if it contains a zero of any of its apolar polynomials and is the smallest such domain with respect to inclusion. In this work we establish several general properties of the loci and show, in particular, that the property of a set being a locus of a polynomial is preserved under a Möbius transformation. We pose the problem of finding a locus inside the smallest disk containing the roots of p ( z ) p(z) and solve it for polynomials of degree 3 3 . Numerous examples are given.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference4 articles.

1. London Mathematical Society Monographs. New Series;Rahman, Q. I.,2002

2. J.H. Grace, The zeros of a polynomial, Proc. Cambridge Philos. Soc. 11 (1902), 352–357.

3. Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen;Szegö, G.;Math. Z.,1922

4. Multivariate stable polynomials: theory and applications;Wagner, David G.;Bull. Amer. Math. Soc. (N.S.),2011

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex multi-affine polynomials and invariant circles;Journal of Mathematical Analysis and Applications;2023-07

2. Coninvolutory matrices, multi-affine polynomials, and invariant circles;Linear and Multilinear Algebra;2022-03-16

3. What Is the Basic Unit of Scientific Progress? A Quantitative, Corpus-Based Study;Journal for General Philosophy of Science;2022-01-27

4. Bibliography;Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial;2022

5. Bernstein-type inequalities for polar derivatives of polynomials;Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3