Inverse problems for deformation rings

Author:

Bleher Frauke,Chinburg Ted,de Smit Bart

Abstract

Let W W be a complete Noetherian local commutative ring with residue field k k of positive characteristic p p . We study the inverse problem for the universal deformation rings R W ( Γ , V ) R_{W}(\Gamma ,V) relative to W W of finite dimensional representations V V of a profinite group Γ \Gamma over k k . We show that for all p p and n 1 n \ge 1 , the ring W [ [ t ] ] / ( p n t , t 2 ) W[[t]]/(p^n t,t^2) arises as a universal deformation ring. This ring is not a complete intersection if p n W { 0 } p^nW\neq \{0\} , so we obtain an answer to a question of M. Flach in all characteristics. We also study the ‘inverse inverse problem’ for the ring W [ [ t ] ] / ( p n t , t 2 ) W[[t]]/(p^n t,t^2) ; this is to determine all pairs ( Γ , V ) (\Gamma , V) such that R W ( Γ , V ) R_{W}(\Gamma ,V) is isomorphic to this ring.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Universal deformation rings and cyclic blocks;Bleher, Frauke M.;Math. Ann.,2000

2. Universal deformation rings need not be complete intersections;Bleher, Frauke M.;C. R. Math. Acad. Sci. Paris,2006

3. Universal deformation rings need not be complete intersections;Bleher, Frauke M.;Math. Ann.,2007

4. F. M. Bleher, T. Chinburg and B. de Smit, Deformation rings which are not local complete intersections, March 2010. arXiv:1003.3143

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal deformation rings of string modules over certain class of self-injective special biserial algebras;Communications in Algebra;2019-05-03

2. The inverse deformation problem;Compositio Mathematica;2016-07-14

3. The inverse problem for universal deformation rings and the special linear group;Transactions of the American Mathematical Society;2016-03-01

4. Universal deformation rings and fusion;Journal of Algebra;2014-11

5. Brauer’s generalized decomposition numbers and universal deformation rings;Transactions of the American Mathematical Society;2014-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3