Lyubeznik numbers of monomial ideals

Author:

Montaner Josep,Vahidi Alireza

Abstract

Let R = k [ x 1 , . . . , x n ] R=k[x_1,...,x_n] be the polynomial ring in n n independent variables, where k k is a field. In this work we will study Bass numbers of local cohomology modules H I r ( R ) H^r_I(R) supported on a squarefree monomial ideal I R I\subseteq R . Among them we are mainly interested in Lyubeznik numbers. We build a dictionary between the modules H I r ( R ) H^r_I(R) and the minimal free resolution of the Alexander dual ideal I I^{\vee } that allows us to interpret Lyubeznik numbers as the obstruction to the acyclicity of the linear strands of I I^{\vee } . The methods we develop also help us to give a bound for the injective dimension of the local cohomology modules in terms of the dimension of the small support.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference44 articles.

1. Characteristic cycles of local cohomology modules of monomial ideals;Àlvarez Montaner, Josep;J. Pure Appl. Algebra,2000

2. Some numerical invariants of local rings;Àlvarez Montaner, Josep;Proc. Amer. Math. Soc.,2004

3. Operations with regular holonomic 𝒟-modules with support a normal crossing;Àlvarez Montaner, Josep;J. Symbolic Comput.,2005

4. Local cohomology, arrangements of subspaces and monomial ideals;Àlvarez Montaner, Josep;Adv. Math.,2003

5. Linearization of local cohomology modules;Àlvarez Montaner, Josep,2003

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lyubeznik numbers, -modules and modules of generalized fractions;Transactions of the American Mathematical Society;2022-07-13

2. Linear strands of edge ideals of multipartite uniform clutters;Journal of Pure and Applied Algebra;2021-10

3. Local cohomology and Lyubeznik numbers of F-pure rings;Journal of Algebra;2021-04

4. Local Cohomology—An Invitation;Commutative Algebra;2021

5. Bass numbers of local cohomology of cover ideals of graphs;Journal of Algebraic Combinatorics;2020-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3