Detecting fast solvability of equations via small powerful Galois groups

Author:

Chebolu S.,Mináč J.,Quadrelli C.

Abstract

Fix an odd prime p p , and let F F be a field containing a primitive p p th root of unity. It is known that a p p -rigid field F F is characterized by the property that the Galois group G F ( p ) G_F(p) of the maximal p p -extension F ( p ) / F F(p)/F is a solvable group. We give a new characterization of p p -rigidity which says that a field F F is p p -rigid precisely when two fundamental canonical quotients of the absolute Galois groups coincide. This condition is further related to analytic p p -adic groups and to some Galois modules. When F F is p p -rigid, we also show that it is possible to solve for the roots of any irreducible polynomials in F [ X ] F[X] whose splitting field over F F has a p p -power degree via non-nested radicals. We provide new direct proofs for hereditary p p -rigidity, together with some characterizations for G F ( p ) G_F(p) – including a complete description for such a group and for the action of it on F ( p ) F(p) – in the case F F is p p -rigid.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference44 articles.

1. Field theory and the cohomology of some Galois groups;Adem, Alejandro;J. Algebra,2001

2. Rigid elements, valuations, and realization of Witt rings;Arason, Jón Kr.;J. Algebra,1987

3. Class Field Theory

4. Euklidische Körper und euklidische Hüllen von Körpern;Becker, Eberhard;J. Reine Angew. Math.,1974

5. [Ca1545] G. Cardano, Artis magnae, sive de regulis algebraicis liber unus, Nuremberg 1545. Translated by T. Richard Witmer as Ars Magma, or the Rules of Algebra, MIT Press, 1968, reprinted, Dover Publications, 1993.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3