Necessary conditions for Schatten class localization operators

Author:

Cordero Elena,Gröchenig Karlheinz

Abstract

We study time-frequency localization operators of the form A a φ 1 , φ 2 A_a^{\varphi _1\!,\varphi _2} , where a a is the symbol of the operator and φ 1 , φ 2 \varphi _1 , \varphi _2 are the analysis and synthesis windows, respectively. It is shown in an earlier paper by the authors that a sufficient condition for A a φ 1 , φ 2 S p ( L 2 ( R d ) ) A_a^{\varphi _1,\varphi _2}\in S_p(L^2(\mathbb {R}^d)) , the Schatten class of order p p , is that a a belongs to the modulation space M p , ( R 2 d ) M^{p,\infty }(\mathbb {R}^{2d}) and the window functions to the modulation space M 1 M^1 . Here we prove a partial converse: if A a φ 1 , φ 2 S p ( L 2 ( R d ) ) A_a^{\varphi _1,\varphi _2}\in S_p(L^2(\mathbb {R}^d)) for every pair of window functions φ 1 , φ 2 S ( R 2 d ) \varphi _1,\varphi _2\in \mathcal {S}(\mathbb {R}^{2d}) with a uniform norm estimate, then the corresponding symbol a a must belong to the modulation space M p , ( R 2 d ) M^{p,\infty }(\mathbb {R}^{2d}) . In this sense, modulation spaces are optimal for the study of localization operators. The main ingredients in our proofs are frame theory and Gabor frames. For p = p=\infty and p = 2 p=2 , we recapture earlier results, which were obtained by different methods.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Wick and anti-Wick symbols of operators;Berezin, F. A.;Mat. Sb. (N.S.),1971

2. Anti-Wick quantization of tempered distributions;Boggiatto, Paolo,2003

3. Time-frequency analysis of localization operators;Cordero, Elena;J. Funct. Anal.,2003

4. Time-frequency localization operators: a geometric phase space approach;Daubechies, Ingrid;IEEE Trans. Inform. Theory,1988

5. Uniform eigenvalue estimates for time-frequency localization operators;De Mari, F.;J. London Math. Soc. (2),2002

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Note on the Operator Window of Modulation Spaces;Journal of Fourier Analysis and Applications;2023-11-20

2. Toeplitz density operators and their separability properties;Quantum Studies: Mathematics and Foundations;2023-01-11

3. The essence of invertible frame multipliers in scalability;Advances in Computational Mathematics;2022-04-14

4. On the relations of general homogeneous spaces and the two-wavelet localization operators;Journal of Pseudo-Differential Operators and Applications;2021-03-09

5. Subexponential decay and regularity estimates for eigenfunctions of localization operators;Journal of Pseudo-Differential Operators and Applications;2021-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3