We discuss Morita equivalence within the family
{
D
μ
ν
c
:
c
∈
Z
,
c
>
0
,
μ
,
ν
∈
R
}
\{D_{\mu \nu }^c: c\in \mathbb {Z},\ c>0,\ \mu ,\nu \in \mathbb {R}\}
of quantum Heisenberg manifolds. Morita equivalence classes are described in terms of the parameters
μ
\mu
,
ν
\nu
and the rank of the free abelian group
G
μ
ν
=
2
μ
Z
+
2
ν
Z
+
Z
G_{\mu \nu }=2\mu \mathbb {Z}+2\nu \mathbb {Z}+\mathbb {Z}
associated to the
C
∗
C^*
-algebra
D
μ
ν
c
D_{\mu \nu }^{c}
.