View-obstruction problems. II

Author:

Cusick T. W.

Abstract

Let S n {S^n} denote the region 0 > x i > ( i = 1 , 2 , , n ) 0 > {x_i} > \infty (i = 1,2, \ldots ,n) of n n -dimensional Euclidean space E n {E^n} . Suppose C C is a closed convex body in E n {E^n} which contains the origin as an interior point. Define α C \alpha C for each real number α 0 \alpha \geqslant 0 to be the magnification of C C by the factor α \alpha and define C + ( m 1 , , m n ) C + ({m_1}, \ldots ,{m_n}) for each point ( m 1 , , m n ) ({m_1}, \ldots ,{m_n}) in E n {E^n} to be the translation of C C by the vector ( m 1 , , m n ) ({m_1}, \ldots ,{m_n}) . Define the point set Δ ( C , α ) \Delta (C,\alpha ) by Δ ( C , α ) = { α C + ( m 1 + 1 2 , , m n + 1 2 ) : m 1 , , m n \Delta (C,\alpha ) = \{ \alpha C + ({m_1} + \frac {1} {2}, \ldots ,{m_n} + \frac {1} {2}):{m_1}, \ldots ,{m_n} nonnegative integers}. The view-obstruction problem for C C is the problem of finding the constant K ( C ) K(C) defined to be the lower bound of those α \alpha such that any half-line L L given by x i = a i t ( i = 1 , 2 , , n ) {x_i} = {a_i}t(i = 1,2, \ldots ,n) , where the a i ( 1 i n ) {a_i}(1 \leqslant i \leqslant n) are positive real numbers, and the parameter t t runs through [ 0 , ) [0,\infty ) , intersects Δ ( C , α ) \Delta (C,\alpha ) . The paper considers the case where C C is the n n -dimensional cube with side 1, and in this case the constant K ( C ) K(C) is known for n 3 n \leqslant 3 . The paper gives a new proof for the case n = 3 n = 3 . Unlike earlier proofs, this one could be extended to study the cases with n 4 n \geqslant 4 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference4 articles.

1. Untere Schranken für zwei diophantische Approximations-Funktionen;Betke, U.;Monatsh. Math.,1972

2. View-obstruction problems;Cusick, T. W.;Aequationes Math.,1973

3. View-obstruction problems in 𝑛-dimensional geometry;Cusick, T. W.;J. Combinatorial Theory Ser. A,1974

4. Extremum problems for the motions of a billiard ball. II. The 𝐿_{∞} norm;Schoenberg, I. J.;Nederl. Akad. Wetensch. Proc. Ser. A {\bf79}=Indag. Math.,1976

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LONELY RUNNERS IN FUNCTION FIELDS;Mathematika;2019-01

2. On Empty Simplices, Pyramids, Parallelepipeds;Geometry of Continued Fractions;2013

3. On the chromatic number of circulant graphs;Discrete Mathematics;2009-09

4. Regular chromatic number and the lonely runner problem;Electronic Notes in Discrete Mathematics;2007-08

5. View-obstruction: a shorter proof for 6 lonely runners;Discrete Mathematics;2004-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3