A new degree bound for vector invariants of symmetric groups

Author:

Fleischmann P.

Abstract

Let R R be a commutative ring, V V a finitely generated free R R -module and G G L R ( V ) G\le GL_R(V) a finite group acting naturally on the graded symmetric algebra A = S ( V ) A=S(V) . Let β ( V , G ) \beta (V,G) denote the minimal number m m , such that the ring A G A^G of invariants can be generated by finitely many elements of degree at most m m .

For G = Σ n G=\Sigma _n and V ( n , k ) V(n,k) , the k k -fold direct sum of the natural permutation module, one knows that β ( V ( n , k ) , Σ n ) n \beta (V(n,k),\Sigma _n) \le n , provided that n ! n! is invertible in R R . This was used by E. Noether to prove β ( V , G ) | G | \beta (V,G) \le |G| if | G | ! R |G|! \in R^* .

In this paper we prove β ( V ( n , k ) , Σ n ) m a x { n , k ( n 1 ) } \beta (V(n,k),\Sigma _n) \le max\{n,k(n-1)\} for arbitrary commutative rings R R and show equality for n = p s n=p^s a prime power and R = Z R = \mathbb {Z} or any ring with n 1 R = 0 n\cdot 1_R=0 . Our results imply β ( V , G ) m a x { | G | , rank ( V ) ( | G | 1 ) } \begin{equation*} \beta (V,G)\le max\{|G|, \operatorname {rank}(V)(|G|-1)\}\end{equation*} for any ring with | G | R |G| \in R^* .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Vector invariants of symmetric groups;Campbell, H. E. A.;Canad. Math. Bull.,1990

2. Efficient generation of the ring of invariants;Hu, Shou-Jen;J. Algebra,1996

3. E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77, 89-92, (1916).

4. E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik , Nachr. Ges. Wiss. Göttingen (1926), 28-35

5. reprinted in 'Collected Papers', pp. 485-492, Springer Verlag, Berlin (1983).

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vector invariants of permutation groups in characteristic zero;International Journal of Mathematics;2023-12-21

2. Symmetric polynomials over finite fields;Finite Fields and Their Applications;2023-08

3. Separating invariants over finite fields;Journal of Pure and Applied Algebra;2022-04

4. Separating invariants for multisymmetric polynomials;Proceedings of the American Mathematical Society;2020-12-14

5. Applications of Multisymmetric Syzygies in Invariant Theory;Rings, Polynomials, and Modules;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3