Let
F
:
C
n
→
C
n
F:\mathbb {C}^n \rightarrow \mathbb {C}^n
be a polynomial mapping in Yagzhev form, i.e.
\[
F
(
x
1
,
…
,
x
n
)
=
(
x
1
+
H
1
(
x
1
,
…
,
x
n
)
,
…
,
x
n
+
H
n
(
x
1
,
…
,
x
n
)
)
,
F(x_1,\ldots ,x_n)=(x_1+H_1(x_1,\ldots ,x_n),\ldots ,x_n+H_n(x_1,\ldots ,x_n)),
\]
where
H
i
H_i
are homogeneous polynomials of degree 3. We show that if
J
a
c
(
F
)
∈
C
∗
\mathrm {Jac}(F) \in \mathbb {C}^*
and the Jacobian matrix of
F
F
is symmetric, then the polynomials
x
i
+
H
i
(
x
1
,
…
,
x
n
)
x_i+H_i(x_1,\ldots ,x_n)
are irreducible as elements of the ring
C
[
x
1
,
…
,
x
n
]
\mathbb {C}[x_1,\ldots ,x_n]
.