Let
f
:
M
→
N
f:M\, \to \,N
be a degree n branched cover onto a compact, connected nonorientable surface with branch points
y
1
,
y
2
,
…
,
y
m
{y_1},\,{y_2},\, \ldots ,\,{y_m}
in N, and let the multiplicities at points in
f
−
1
(
y
i
)
{f^{ - 1}}({y_i})
be
μ
i
1
,
μ
i
2
,
…
,
μ
i
k
i
{\mu _{i1}},\,{\mu _{i2}},\, \ldots ,\,{\mu _{i{k_i}}}
. The branching array of f, designated by B, is the following array of numbers:
\[
μ
11
,
μ
12
,
…
,
μ
1
k
1
μ
21
,
μ
22
,
…
,
μ
2
k
2
⋮
μ
m
1
,
μ
m
2
,
…
,
μ
m
k
m
\begin {gathered} {\mu _{11}},\,{\mu _{12}},\, \ldots ,\,{\mu _{1{k_1}}} {\mu _{21}},\,{\mu _{22\,}}, \ldots ,\,{\mu _{2{k_2}}} \,\,\,\,\,\,\,\,\,\,\,\, \vdots {\mu _{m1}},\,{\mu _{m2}},\, \ldots ,\,{\mu _{m{k_m}}} \end {gathered}
\]
We show that the numbers in the branching array must always satisfy the following conditions: (1)
\[
∑
{
μ
i
j
+
1
|
j
=
1
,
2
,
…
,
k
i
}
=
n
\sum {\{ {\mu _{ij}} \,+ \,1|j \,=\, 1,\,2,\, \ldots ,\,{k_i}\} \,=\, n}
\]
, (2)
∑
{
μ
i
j
|
i
=
1
,
2
,
…
,
m
;
j
=
1
,
2
,
…
,
k
i
}
\sum {\{ {\mu _{ij}}|i\,=\, 1,\,2, \ldots ,m;j\,=\, 1,\,2, \ldots ,{k_i}\} }
is even. Furthermore, if B is any array of numbers satisfying these conditions, and if N is not the projective plane, then there is a branched cover onto N with B as its branching array.