Elementary abelian 2-group actions on flag manifolds and applications

Author:

Mukherjee Goutam,Sankaran Parameswaran

Abstract

Let N \mathcal N_\ast denote the unoriented cobordism ring. Let G = ( Z / 2 ) n G=(\mathbb Z/2)^n and let Z ( G ) Z_\ast (G) denote the equivariant cobordism ring of smooth manifolds with smooth G G -actions having finite stationary points. In this paper we show that the unoriented cobordism class of the (real) flag manifold M = O ( m ) / ( O ( m 1 ) × × O ( m s ) ) M=O(m)/(O(m_1)\times \dots \times O(m_s)) is in the subalgebra generated by i > 2 n N i \bigoplus _{i>2^n}\mathcal N_i , where m = m j m= \sum m_j , and 2 n 1 > m 2 n 2^{n-1}>m\le 2^n . We obtain sufficient conditions for indecomposability of an element in Z ( G ) Z_\ast (G) . We also obtain a sufficient condition for algebraic independence of any set of elements in Z ( G ) Z_\ast (G) . Using our criteria, we construct many indecomposable elements in the kernel of the forgetful map Z d ( G ) N d Z_d(G)\to \mathcal N_d in dimensions 2 d > n 2\le d>n , for n > 2 n>2 , and show that they generate a polynomial subalgebra of Z ( G ) Z_\ast (G) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. Lecture Notes in Mathematics;Conner, Pierre E.,1979

2. Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33;Conner, P. E.,1964

3. Fixpunkte vetauschbarer Involutionen;tom Dieck, Tammo;Arch. Math. (Basel),1970

4. Characteristic numbers of 𝐺-manifolds. I;tom Dieck, Tammo;Invent. Math.,1971

5. (𝑍₂)^{𝑘}-actions and characteristic numbers;Kosniowski, Czes;Indiana Univ. Math. J.,1979

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A note on the equivariant cobordism of generalized Dold manifolds;Topology and its Applications;2021-04

2. Algebraic topology in India;Indian Journal of Pure and Applied Mathematics;2019-08-20

3. Some computations in equivariant cobordism in relation to Milnor manifolds;Topology and its Applications;2014-08

4. Small Covers and the Equivariant Bordism Classification of 2-torus Manifolds;International Mathematics Research Notices;2013-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3