Real forms of a Riemann surface of even genus

Author:

Gromadzki G.,Izquierdo M.

Abstract

Natanzon proved that a Riemann surface X X of genus g 2 g \ge 2 has at most 2 ( g + 1 ) 2(\sqrt g+1) conjugacy classes of symmetries, and this bound is attained for infinitely many genera g g . The aim of this note is to prove that a Riemann surface of even genus g g has at most four conjugacy classes of symmetries and this bound is attained for an arbitrary even g g as well. An equivalent formulation in terms of algebraic curves is that a complex curve of an even genus g g has at most four real forms which are not birationally equivalent.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference6 articles.

1. North-Holland Mathematics Studies;Alling, Norman L.,1987

2. Lecture Notes in Mathematics;Bujalance, Emilio,1990

3. On the number of real curves associated to a complex algebraic curve;Bujalance, Emilio;Proc. Amer. Math. Soc.,1994

4. The order of a finite group of homeomorphisms of a surface onto itself, and the number of real forms of a complex algebraic curve;Natanzon, S. M.;Dokl. Akad. Nauk SSSR,1978

5. Symmetries and pseudosymmetries of hyperelliptic surfaces;Singerman, David;Glasgow Math. J.,1980

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On s-extremal Riemann surfaces of even genus;Revista Matemática Complutense;2020-11-24

2. On the singular nerve of the moduli space of compact Riemann surfaces;Fundamenta Mathematicae;2019

3. Real structures on marked Schottky space;Journal of the London Mathematical Society;2018-04-17

4. Conjugacy Classes of Reflections of Maps;Journal of Mathematical Sciences;2017-09-21

5. Klein foams as families of real forms of Riemann surfaces;Advances in Theoretical and Mathematical Physics;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3