Geometric curvature bounds in Riemannian manifolds with boundary

Author:

Alexander Stephanie B.,Berg I. David,Bishop Richard L.

Abstract

An Alexandrov upper bound on curvature for a Riemannian manifold with boundary is proved to be the same as an upper bound on sectional curvature of interior sections and of sections of the boundary which bend away from the interior. As corollaries those same sectional curvatures are related to estimates for convexity and conjugate radii; the Hadamard-Cartan theorem and Yau’s isoperimetric inequality for spaces with negative curvature are generalized.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov. 38 (1951), 5-23. (Russian) (Much of [Av1] is translated in [Av2].)

2. Über eine Verallgemeinerung der Riemannschen Geometrie;Alexandrow, A. D.;Schr. Forschungsinst. Math.,1957

3. Generalized Riemannian spaces;Aleksandrov, A. D.;Uspekhi Mat. Nauk,1986

4. The Riemannian obstacle problem;Alexander, Stephanie B.;Illinois J. Math.,1987

5. \bysame, Cut loci, minimizers and wave fronts in Riemannian manifolds with boundary, Michigan Math. J. 40 (1993) (to appear).

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating the Morse index of free boundary minimal hypersurfaces through covering arguments;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-06

2. Diffusion maps for embedded manifolds with boundary with applications to PDEs;Applied and Computational Harmonic Analysis;2024-01

3. Cyclic Projections in Hadamard Spaces;Journal of Optimization Theory and Applications;2022-06-16

4. Graph approximations to the Laplacian spectra;Journal of Topology and Analysis;2020-01-07

5. Ramification conjecture and Hirzebruch’s property of line arrangements;Compositio Mathematica;2016-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3