A note on discriminantal arrangements

Author:

Falk Michael

Abstract

Let A 0 {\mathcal {A}_0} be a fixed affine arrangement of n hyperplanes in general position in K k {{\mathbf {K}}^k} . Let U ( n , k ) U(n,k) denote the set of general position arrangements whose elements are parallel translates of the hyperplanes of A 0 {\mathcal {A}_0} . Then U ( n , k ) U(n,k) is the complement of a central arrangement B ( n , k ) \mathcal {B}(n,k) . These are the well-known discriminantal arrangements introduced by Y. I. Manin and V. V. Schechtman. In this note we give an explicit description of B ( n , k ) \mathcal {B}(n,k) in terms of the original arrangement A 0 {\mathcal {A}_0} . In terms of the underlying matroids, B ( n , k ) \mathcal {B}(n,k) realizes an adjoint of the dual of the matroid associated with A 0 {\mathcal {A}_0} . Using this description we show that, contrary to the conventional wisdom, neither the intersection lattice of B ( n , k ) \mathcal {B}(n,k) nor the topology of U ( n , k ) U(n,k) is independent of the original arrangement A 0 {\mathcal {A}_0} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference8 articles.

1. Adjoints of oriented matroids;Bachem, A.;Combinatorica,1986

2. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler, Oriented matroids, Cambridge Univ. Press, Cambridge, 1992.

3. Combinatorial geometries, convex polyhedra, and Schubert cells;Gel′fand, I. M.;Adv. in Math.,1987

4. Higher logarithms;Hain, Richard M.;Illinois J. Math.,1990

5. R. Lawrence, A presentation for Manin and Schechtman’s higher braid groups, MSRI preprint series #04129-91, April, 1991.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adjoints of matroids;Advances in Applied Mathematics;2024-05

2. Modifications of hyperplane arrangements;Journal of Combinatorial Theory, Series A;2023-11

3. Likelihood degenerations;Advances in Mathematics;2023-02

4. On the non-very generic intersections in discriminantal arrangements;Comptes Rendus. Mathématique;2022-09-29

5. On the enumeration of a certain type of hyperplane arrangements;Proceedings - Mathematical Sciences;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3