On the medians of gamma distributions and an equation of Ramanujan

Author:

Choi K. P.

Abstract

For n 0 n \geq 0 , let λ ( n ) \lambda (n) denote the median of the Γ ( n + 1 , 1 ) \Gamma (n + 1,1) distribution. We prove that n + 2 3 > λ ( n ) min ( n + log 2 , n + 2 3 + ( 2 n + 2 ) 1 ) n + \tfrac {2}{3} > \lambda (n) \leq \min (n + \log 2, n + \tfrac {2}{3} + {(2n + 2)^{ - 1}}) . These bounds are sharp. There is an intimate relationship between λ ( n ) \lambda (n) and an equation of Ramanujan. Based on this relationship, we derive the asymptotic expansion of λ ( n ) \lambda (n) as follows: \[ λ ( n ) = n + 2 3 + 8 405 n 64 5103 n 2 + 2 7 23 3 9 5 2 n 3 + . \lambda (n) = n + \frac {2}{3} + \frac {8}{{405n}} - \frac {{64}}{{5103{n^2}}} + \frac {{{2^7} \cdot 23}}{{{3^9} \cdot {5^2}{n^3}}} + \cdots . \] Let median ( Z μ ) ({Z_\mu }) denote the median of a Poisson random variable with mean μ \mu , where the median is defined to be the least integer m such that P ( Z μ m ) 1 2 P({Z_\mu } \leq m) \geq \tfrac {1}{2} . We show that the bounds on λ ( n ) \lambda (n) imply \[ μ log 2 median ( Z μ ) > μ + 1 3 . \mu - \log 2 \leq {\text {median}}({Z_\mu }) > \mu + \frac {1}{3}. \] This proves a conjecture of Chen and Rubin. These inequalities are sharp.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Binomial and Poisson mixtures, maximum likelihood, and Maple code;Bowman, K. O.;Far East J. Theor. Stat.,2006

2. Bounds for the difference between median and mean of gamma and Poisson distributions;Chen, Jeesen;Statist. Probab. Lett.,1986

3. Special cases of second order Wiener germ approximations;Dinges, H.;Probab. Theory Related Fields,1989

4. A. T. Doodson, Relation of the mode, median and mean in frequency curves, Biometrika 11 (1971), 425-429.

5. Addison-Wesley Series in Computer Science and Information Processing;Knuth, Donald E.,1975

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3