On Minakshisundaram-Pleijel zeta functions of spheres

Author:

Carletti E.,Monti Bragadin G.

Abstract

The aim of this paper is to show that the Minakshisundaram-Pleijel zeta function Z k ( s ) {Z_k}(s) of k-dimensional sphere S k , k 2 {\mathbb {S}^k},k \geq 2 (defined in e ( s ) > k 2 \Re e(s) > \frac {k}{2} by \[ Z k ( s ) = n = 1 P k ( n ) [ n ( n + k 1 ) ] s {Z_k}(s) = \sum \limits _{n = 1}^\infty {\frac {{{P_k}(n)}}{{{{[n(n + k - 1)]}^s}}}} \] with ( k 1 ) ! P k ( n ) = R ( n + 1 , k 2 ) ( 2 n + k 1 ) (k - 1)!{P_k}(n) = \mathcal {R}(n + 1,k - 2)(2n + k - 1) where the "rising factorial" R ( x , n ) = x ( x + 1 ) ( x + n 1 ) \mathcal {R}(x,n) = x(x + 1) \cdots (x + n - 1) is defined for real number x and n nonnegative integer) can be put in the form \[ ( k 1 ) ! Z k ( s ) = l = 0 ( 1 ) l ( k 1 2 ) 2 l ( s l ) j = 0 k 1 B k , j ζ ( 2 s + 2 l j , k + 1 2 ) (k - 1)!{Z_k}(s) = {\sum \limits _{l = 0}^\infty {{{( - 1)}^l}\left ( {\frac {{k - 1}}{2}} \right )} ^{2l}}\left ( {\begin {array}{*{20}{c}} { - s} \\ l \\ \end {array} } \right )\sum \limits _{j = 0}^{k - 1} {{B_{k,}}_j\zeta (2s + 2l - j,\frac {{k + 1}}{2})} \] where B k , j {B_{k,j}} are explicitly computed. The above formula allows us to find explicitly the residue of Z k ( s ) {Z_k}(s) at the pole s = k 2 n , n N s = \frac {k}{2} - n,n \in \mathbb {N} , \[ 1 ( k 1 ) ! h = 0 k 2 1 l + h = n l 0 ( 1 ) l ( k 1 2 ) 2 l ( n k 2 l ) B k , k 2 h 1 . \frac {1}{{(k - 1)!}}\sum \limits _{h = 0}^{\frac {k}{2} - 1} {{{\sum \limits _{\begin {array}{*{20}{c}} {l + h = n} \\ {l \geq 0} \\ \end {array} } {{{( - 1)}^l}\left ( {\frac {{k - 1}}{2}} \right )} }^{2l}}\left ( {\begin {array}{*{20}{c}} {n - \frac {k}{2}} \\ l \\ \end {array} } \right )} {B_{k,k - 2h - 1}}. \] In passing, we also obtain apparently new relations among the Stirling numbers.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. Lecture Notes in Mathematics, Vol. 194;Berger, Marcel,1971

2. On Dirichlet series associated with polynomials;Carletti, E.;Proc. Amer. Math. Soc.,1994

3. Mathematics Lecture Series;Gilkey, Peter B.,1984

4. Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds;Minakshisundaram, S.;Canad. J. Math.,1949

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explicit descriptions of spectral properties of Laplacians on spheres $${\mathbb {S}}^{N}\,(N\ge 1)$$: a review;São Paulo Journal of Mathematical Sciences;2020-10-06

2. Large charge at large N;Journal of High Energy Physics;2019-12

3. Generalised heat coefficients and associated spectral zeta functions on complex projective spaces Pn(ℂ);Complex Variables and Elliptic Equations;2019-06-02

4. Spectra of orbifolds with cyclic fundamental groups;Annals of Global Analysis and Geometry;2016-02-20

5. Weighted Riemannian 1-manifolds for classical orthogonal polynomials and their heat kernel;Analysis and Mathematical Physics;2015-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3