For a discrete valuation ring R, let
fr
(
R
)
{\text {fr}}(R)
be the supremum of the ranks of indecomposable finite rank torsion-free R-modules. Then
fr
(
R
)
=
1
,
2
,
3
{\text {fr}}(R) = 1,2,3
, or
∞
\infty
. A complete list of indecomposables is given if
fr
(
R
)
≤
3
{\text {fr}}(R) \leq 3
, in which case R is known to be a Nagata valuation domain.