On the trace of an idempotent in a group ring

Author:

Cliff Gerald H.,Sehgal Sudarshan K.

Abstract

Let KG be the group ring of a polycyclic by finite group G over a field K of characteristic zero. It is proved that if e = e ( g ) g e = \sum e(g)g is a nontrivial idempotent in KG then its trace e ( 1 ) e(1) is a rational number r / s , ( r , s ) = 1 r/s,(r,s) = 1 , with the property that for every prime divisor p of s, G has an element of order p. This result is used to prove that if R is a commutative ring of characteristic zero, without nontrivial idempotents and G is a polycyclic by finite group such that no group order 1 \ne 1 is invertible in R, then RG has no nontrivial idempotents.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference7 articles.

1. Rank element of a projective module;Hattori, Akira;Nagoya Math. J.,1965

2. Idempotents in Noetherian group rings;Formanek, Edward;Canadian J. Math.,1973

3. Idempotent elements and ideals in group rings and the intersection theorem;Parmenter, M. M.;Arch. Math. (Basel),1973

4. Pure and Applied Mathematics;Passman, Donald S.,1971

5. Certain algebraic elements in group rings;Sehgal, Sudarshan K.;Arch. Math. (Basel),1975

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integral group rings: Groups of units and classical K-theory;Journal of Soviet Mathematics;1991-11

2. Ranks of projective modules of group rings;Communications in Algebra;1985-01

3. Remarks on a principle of localization;Israel Journal of Mathematics;1981-09

4. Algebraic cycles as residues of meromorphic forms;Mathematische Annalen;1980-02

5. Idempotents in group rings;Journal of Pure and Applied Algebra;1980-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3