Towers of 2-covers of hyperelliptic curves

Author:

Bruin Nils,Flynn E.

Abstract

In this article, we give a way of constructing an unramified Galois-cover of a hyperelliptic curve. The geometric Galois-group is an elementary abelian 2 2 -group. The construction does not make use of the embedding of the curve in its Jacobian, and it readily displays all subcovers. We show that the cover we construct is isomorphic to the pullback along the multiplication-by- 2 2 map of an embedding of the curve in its Jacobian. We show that the constructed cover has an abundance of elliptic and hyperelliptic subcovers. This makes this cover especially suited for covering techniques employed for determining the rational points on curves. In particular the hyperelliptic subcovers give a chance for applying the method iteratively, thus creating towers of elementary abelian 2-covers of hyperelliptic curves. As an application, we determine the rational points on the genus 2 2 curve arising from the question of whether the sum of the first n n fourth powers can ever be a square. For this curve, a simple covering step fails, but a second step succeeds.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Cyclotomic fields and Kummer extensions;Birch, B. J.,1967

2. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)];Bosch, Siegfried,1990

3. Nils Bruin, Chabauty methods and covering techniques applied to generalised Fermat equations, Ph.D. thesis, Universiteit Leiden, 1999.

4. Nils Bruin, Chabauty methods using elliptic curves, Tech. Report W99–14, Leiden, 1999.

5. Nils Bruin and Victor Flynn, Transcript of computations, available from \url{ftp://ftp.liv.ac.uk/pub/genus2/bruinflynn/tow2cov} or \url{http://www.cecm.sfu.ca/ bruin/tow2cov}, 2001.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Most odd-degree binary forms fail to primitively represent a square;Compositio Mathematica;2024-02-08

2. Brauer-Manin obstructions on hyperelliptic curves;Advances in Mathematics;2023-10

3. Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings;Research in Number Theory;2022-10-12

4. Explicit two-cover descent for genus 2 curves;Research in Number Theory;2022-09-13

5. Prym varieties of genus four curves;Transactions of the American Mathematical Society;2019-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3