Damped wave equation with a critical nonlinearity

Author:

Hayashi Nakao,Kaikina Elena,Naumkin Pavel

Abstract

We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity { t 2 u + t u Δ u + λ u 1 + 2 n = 0 ,   x R n ,   t > 0 , u ( 0 , x ) = ε u 0 ( x ) , t u ( 0 , x ) = ε u 1 ( x ) , x R n , \begin{equation*} \left \{ \begin {array}{c} \partial _{t}^{2}u+\partial _{t}u-\Delta u+\lambda u^{1+\frac {2}{n}}=0,\text { }x\in \mathbf {R}^{n},\text { }t>0, u(0,x)=\varepsilon u_{0}\left ( x\right ) ,\partial _{t}u(0,x)=\varepsilon u_{1}\left ( x\right ) ,x\in \mathbf {R}^{n}, \end{array} \right . \end{equation*} where ε > 0 , \varepsilon >0, and space dimensions n = 1 , 2 , 3 n=1,2,3 . Assume that the initial data u 0 H δ , 0 H 0 , δ ,   u 1 H δ 1 , 0 H 1 , δ , \begin{equation*} u_{0}\in \mathbf {H}^{\delta ,0}\cap \mathbf {H}^{0,\delta },\text { }u_{1}\in \mathbf {H}^{\delta -1,0}\cap \mathbf {H}^{-1,\delta }, \end{equation*} where δ > n 2 , \delta >\frac {n}{2}, weighted Sobolev spaces are H l , m = { ϕ L 2 ; x m i x l ϕ ( x ) L 2 > } , \begin{equation*} \mathbf {H}^{l,m}=\left \{ \phi \in \mathbf {L}^{2};\left \Vert \left \langle x\right \rangle ^{m}\left \langle i\partial _{x}\right \rangle ^{l}\phi \left ( x\right ) \right \Vert _{\mathbf {L}^{2}}>\infty \right \} , \end{equation*} x = 1 + x 2 . \left \langle x\right \rangle =\sqrt {1+x^{2}}. Also we suppose that λ θ 2 n > 0 , u 0 ( x ) d x > 0 , \begin{equation*} \lambda \theta ^{\frac {2}{n}}>0,\int u_{0}\left ( x\right ) dx>0, \end{equation*} where   θ = ( u 0 ( x ) + u 1 ( x ) ) d x . \begin{equation*} \text { }\theta =\int \left ( u_{0}\left ( x\right ) +u_{1}\left ( x\right ) \right ) dx\text {.} \end{equation*} Then we prove that there exists a positive ε 0 \varepsilon _{0} such that the Cauchy problem above has a unique global solution u C ( [ 0 , ) ; H δ , 0 ) u\in \mathbf {C}\left ( \left [ 0,\infty \right ) ;\mathbf {H}^{\delta ,0}\right ) satisfying the time decay property u ( t ) ε θ G ( t , x ) e φ ( t ) L p C ε 1 + 2 n g 1 n 2 ( t ) t n 2 ( 1 1 p ) \begin{equation*} \left \Vert u\left ( t\right ) -\varepsilon \theta G\left ( t,x\right ) e^{-\varphi \left ( t\right ) }\right \Vert _{\mathbf {L}^{p}}\leq C\varepsilon ^{1+\frac {2}{n}}g^{-1-\frac {n}{2}}\left ( t\right ) \left \langle t\right \rangle ^{-\frac {n}{2}\left ( 1-\frac {1}{p}\right ) } \end{equation*} for all t > 0 , t>0, 1 p , 1\leq p\leq \infty , where ε ( 0 , ε 0 ] . \varepsilon \in \left ( 0,\varepsilon _{0}\right ] .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. On the blowing up of solutions of the Cauchy problem for 𝑢_{𝑡}=Δ𝑢+𝑢^{1+𝛼};Fujita, Hiroshi;J. Fac. Sci. Univ. Tokyo Sect. I,1966

2. V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation, Math. USSR Sbornik, 54 (1986), 421-455.

3. On nonexistence of global solutions of some semilinear parabolic differential equations;Hayakawa, Kantaro;Proc. Japan Acad.,1973

4. Large-time behaviour of solutions to the dissipative nonlinear Schrödinger equation;Hayashi, N.;Proc. Roy. Soc. Edinburgh Sect. A,2000

5. Global existence and time decay of small solutions to the Landau-Ginzburg type equations;Hayashi, Nakao;J. Anal. Math.,2003

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decay property of solutions to the wave equation with space‐dependent damping, absorbing nonlinearity, and polynomially decaying data;Mathematical Methods in the Applied Sciences;2023-01-06

2. L2 asymptotic profiles of solutions to linear damped wave equations;Journal of Differential Equations;2021-09

3. The asymptotic profile of solutions to damped Euler equations;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2021-04-26

4. Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2020-11-05

5. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data;Communications on Pure & Applied Analysis;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3