Dynamical forcing of circular groups

Author:

Calegari Danny

Abstract

In this paper we introduce and study the notion of dynamical forcing. Basically, we develop a toolkit of techniques to produce finitely presented groups which can only act on the circle with certain prescribed dynamical properties. As an application, we show that the set X R / Z X \subset \mathbb {R}/\mathbb {Z} consisting of rotation numbers θ \theta which can be forced by finitely presented groups is an infinitely generated Q \mathbb {Q} –module, containing countably infinitely many algebraically independent transcendental numbers. Here a rotation number θ \theta is forced by a pair ( G θ , α ) (G_\theta ,\alpha ) , where G θ G_\theta is a finitely presented group G θ G_\theta and α G θ \alpha \in G_\theta is some element, if the set of rotation numbers of ρ ( α ) \rho (\alpha ) as ρ \rho varies over ρ Hom ( G θ , Homeo + ( S 1 ) ) \rho \in \operatorname {Hom}(G_\theta ,\operatorname {Homeo}^+(S^1)) is precisely the set { 0 , ± θ } \lbrace 0, \pm \theta \rbrace . We show that the set of subsets of R / Z \mathbb {R}/\mathbb {Z} which are of the form \[ rot ( X ( G , α ) ) = { r R / Z | r = rot ( ρ ( α ) ) , ρ Hom ( G , Homeo + ( S 1 ) ) } , \operatorname {rot}(X(G,\alpha )) = \lbrace r \in \mathbb {R}/\mathbb {Z} \; | \; r = \operatorname {rot}(\rho (\alpha )), \rho \in \operatorname {Hom}(G,\operatorname {Homeo}^+(S^1)) \rbrace , \] where G G varies over countable groups, are exactly the set of closed subsets which contain 0 0 and are invariant under x x x \to -x . Moreover, we show that every such subset can be approximated from above by rot ( X ( G i , α i ) ) \operatorname {rot}(X(G_i,\alpha _i)) for finitely presented G i G_i . As another application, we construct a finitely generated group Γ \Gamma which acts faithfully on the circle, but which does not admit any faithful C 1 C^1 action, thus answering in the negative a question of John Franks.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. Compact Clifford-Klein forms of symmetric spaces;Borel, Armand;Topology,1963

2. Laminations and groups of homeomorphisms of the circle;Calegari, Danny;Invent. Math.,2003

3. A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. 11 (1932), 333–375.

4. A. O. Gel’fond, On Hilbert’s seventh problem, Dokl. Akad. Nauk. SSSR 2 (1934), 1-6. Izv. Akad. Nauk SSSR 2, 177–182.

5. Classe d’Euler et minimal exceptionnel;Ghys, Étienne;Topology,1987

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reconstructing maps out of groups;Annales Scientifiques de l École Normale Supérieure;2023-10-03

2. On the action of the ${\varSigma }(2,3,7)$ homology sphere group on its space of left-orders;Fundamenta Mathematicae;2023

3. The space of circular orderings and semiconjugacy;Journal of Algebra;2021-11

4. Rigidity of mapping class group actions on S1;Geometry & Topology;2020-09-30

5. Groups of piecewise linear homeomorphisms of flows;Compositio Mathematica;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3