Compact complete minimal immersions in ℝ³

Author:

Alarcón Antonio

Abstract

In this paper we find, for any arbitrary finite topological type, a compact Riemann surface M , \mathcal {M}, an open domain M M M\subset \mathcal {M} with the fixed topological type, and a conformal complete minimal immersion X : M R 3 X:M\to \mathbb {R}^3 which can be extended to a continuous map X : M ¯ R 3 , X:\overline {M}\to \mathbb {R}^3, such that X | M X_{|\partial M} is an embedding and the Hausdorff dimension of X ( M ) X(\partial M) is 1. 1.

We also prove that complete minimal surfaces are dense in the space of minimal surfaces spanning a finite set of closed curves in R 3 \mathbb {R}^3 , endowed with the topology of the Hausdorff distance.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. Princeton Mathematical Series, No. 26;Ahlfors, Lars V.,1960

2. Density theorems for complete minimal surfaces in ℝ³;Alarcón, Antonio;Geom. Funct. Anal.,2008

3. Limit sets for complete minimal immersions;Alarcón, Antonio;Math. Z.,2008

4. Quasi-surjective mappings and a generalization of Morse theory;Calabi, Eugenio,1966

5. The Calabi-Yau conjectures for embedded surfaces;Colding, Tobias H.;Ann. of Math. (2),2008

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Calabi–Yau problem for Riemann surfaces with finite genus and countably many ends;Revista Matemática Iberoamericana;2020-10-26

2. Spectrum Estimates and Applications to Geometry;Topics in Modern Differential Geometry;2016-12-22

3. Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves: Figure. 5.1.;Proceedings of the London Mathematical Society;2015-10

4. Isoperimetric inequalities for submanifolds. Jellett-Minkowski's formula revisited;Proceedings of the London Mathematical Society;2014-12-14

5. Complete Non-Orientable Minimal Surfaces in ℝ3 and Asymptotic Behavior;Analysis and Geometry in Metric Spaces;2014-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3