One-dimensional basic sets in the three-sphere

Author:

Gibbons Joel C.

Abstract

This paper is a continuation of Williams’ classification of one-dimensional attracting sets of a diffeomorphism on a compact manifold [Topology 6 (1967)]. After defining the knot presentation of a solenoid in S 3 {S^3} and some knottheoretic preliminaries, we prove Theorem: If 1 , h 1 {\sum _1},{h_1} and 2 , h 2 {\sum _2},{h_2} are shift classes of oriented solenoids admitting elementary presentations K, K , g 1 K,{g_1} and K, K , g 2 K,{g_2} , resp., where g 1 = ( g 2 ) t : H 1 ( K ) H 1 ( K ) {g_1}^ \ast = {({g_2}^ \ast )^t}:{H_1}(K) \to {H_1}(K) , there is an Anosov-Smale diffeomorphism f of S 3 {S^3} such that Ω ( f ) \Omega (f) consists of a source Λ {\Lambda ^ - } and a sink Λ + {\Lambda ^ + } for which Λ + , f / Λ + {\Lambda ^ + },f/{\Lambda ^ + } and Λ , f 1 / Λ {\Lambda ^ - },{f^{ - 1}}/{\Lambda ^ - } are conjugate, resp., to 1 , h 1 {\sum _1},{h_1} and 2 , h 2 {\sum _2},{h_2} . (The author has proved [Proc. Amer. Math. Soc., to appear] that if f is an Anosov-Smale map of S 3 , Ω ( f ) {S^3},\Omega (f) has dimension one, and contains no hyperbolic sets, then f has the above structure.) We also prove Theorem: there is a nonempty C 1 {C^1} -open set F 2 {F_2} in the class of such diffeomorphisms for which K = S 1 K = {S^1} and g 1 = g 2 {g_1} = {g_2} is the double covering such that each f in F 2 {F_2} defines a loop t in S 3 {S^3} , stable up to C 1 {C^1} perturbations, for which at every x in t the generalized stable and unstable manifolds through x are tangent at x.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference4 articles.

1. Differentiable dynamical systems;Smale, S.;Bull. Amer. Math. Soc.,1967

2. One-dimensional non-wandering sets;Williams, R. F.;Topology,1967

3. Annals of Mathematics Studies, No. 56;Neuwirth, L. P.,1965

4. Structurally stable systems are not dense;Smale, S.;Amer. J. Math.,1966

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3