Semilinear transformations

Author:

Abhyankar Shreeram

Abstract

In previous papers, nice trinomial equations were given for unramified coverings of the once punctured affine line in nonzero characteristic p p with the projective general group P G L ( m , q ) \mathrm {PGL}(m,q) and the general linear group G L ( m , q ) \mathrm {GL}(m,q) as Galois groups where m > 1 m>1 is any integer and q > 1 q>1 is any power of p p . These Galois groups were calculated over an algebraically closed ground field. Here we show that, when calculated over the prime field, as Galois groups we get the projective general semilinear group P Γ L ( m , q ) \mathrm {P}\Gamma \mathrm {L}(m,q) and the general semilinear group Γ L ( m , q ) \Gamma \mathrm {L}(m,q) . We also obtain the semilinear versions of the local coverings considered in previous papers.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Steinitz field towers for modular fields;MacLane, Saunders;Trans. Amer. Math. Soc.,1939

2. Coverings of algebraic curves;Abhyankar, Shreeram;Amer. J. Math.,1957

3. Galois theory on the line in nonzero characteristic;Abhyankar, Shreeram S.;Bull. Amer. Math. Soc. (N.S.),1992

4. Nice equations for nice groups;Abhyankar, Shreeram S.;Israel J. Math.,1994

5. Projective polynomials;Abhyankar, Shreeram S.;Proc. Amer. Math. Soc.,1997

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abhyankar's affine arithmetic conjecture for the symmetric and alternating groups;Journal of Pure and Applied Algebra;2024-05

2. Abhyankar’s conjectures in Galois theory: Current status and future directions;Bulletin of the American Mathematical Society;2017-10-23

3. Degree Two Generalized Iteration of q-Additive Polynomials;Algebra, Arithmetic and Geometry with Applications;2004

4. Symplectic Groups and Permutation Polynomials, Part II;Finite Fields and Their Applications;2002-04

5. Descent principle in modular Galois theory;Proceedings Mathematical Sciences;2001-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3