Finite generation of powers of ideals

Author:

Gilmer Robert,Heinzer William,Roitman Moshe

Abstract

Suppose M M is a maximal ideal of a commutative integral domain R R and that some power M n M^n of M M is finitely generated. We show that M M is finitely generated in each of the following cases: (i) M M is of height one, (ii) R R is integrally closed and ht M = 2 \operatorname {ht} M=2 , (iii) R = K [ X ; S ~ ] R = K[X;\tilde S] is a monoid domain over a field K K , where S ~ = S { 0 } \tilde S = S \cup \{0\} is a cancellative torsion-free monoid such that m = 1 m S = \bigcap _{m=1}^\infty mS=\emptyset , and M M is the maximal ideal ( X s : s S ) (X^s:s\in S) . We extend the above results to ideals I I of a reduced ring R R such that R / I R/I is Noetherian. We prove that a reduced ring R R is Noetherian if each prime ideal of R R has a power that is finitely generated. For each d d with 3 d 3 \le d \le \infty , we establish existence of a d d -dimensional integral domain having a nonfinitely generated maximal ideal M M of height d d such that M 2 M^2 is 3 3 -generated.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Prestable ideals;Eakin, Paul;J. Algebra,1976

2. Completely integrally closed domains and 𝑡-ideals;Gabelli, Stefania;Boll. Un. Mat. Ital. B (7),1989

3. On factorization into prime ideals;Gilmer, Robert;Comment. Math. Helv.,1972

4. Queen's Papers in Pure and Applied Mathematics, No. 12;Gilmer, Robert W.,1968

5. Chicago Lectures in Mathematics;Gilmer, Robert,1984

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On non-J-Noetherian rings;Rendiconti del Circolo Matematico di Palermo Series 2;2024-05-23

2. ON NONNIL-m-FORMALLY NOETHERIAN RINGS;COMMUN KOREAN MATH S;2024

3. On seminoetherian rings and modules;Communications in Algebra;2022-06-30

4. Isonoetherian power series rings III;Communications in Algebra;2022-06-21

5. Nonnil-Noetherian Rings;Chain Conditions in Commutative Rings;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3