On a Dirichlet series associated with a polynomial

Author:

Eie Min King

Abstract

Let P ( x ) = j = 2 k ( x + δ j ) P(x) = \prod \nolimits _{j = 2}^k {(x + {\delta _j})} be a polynomial with real coefficients and Re δ j > 1 ( j = 1 , , k ) \operatorname {Re} {\delta _j} > - 1(j = 1, \ldots ,k) . Define the zeta function Z p ( s ) {Z_p}(s) associated with the polynomial P ( x ) P(x) as \[ Z P ( s ) = n = 1 1 P ( n ) s , Re s > 1 / k . {Z_P}(s) = \sum \limits _{n = 1}^\infty {\frac {1}{{P{{(n)}^s}}}} ,\operatorname {Re} s > 1/k. \] Z P ( s ) Z_P(s) is holomorphic for Re s > 1 / k \operatorname {Re} s > 1/k and it has an analytic continuation in the whole complex s s -plane with only possible simple poles at s = j / k ( j = 1 , 0 , 1 , 2 , 3 , ) s = j/k(j = 1,0, - 1, - 2, - 3, \ldots ) other than nonpositive integers. In this paper, we shall obtain the explicit value of Z P ( m ) {Z_P}( - m) for any non-negative integer m m , the asymptotic formula of Z P ( s ) {Z_P}(s) at s = 1 / k s = 1/k , the value Z P ( 0 ) {Z’_P}(0) and its application to the determinants of elliptic operators.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. W. L. Baily, Jr., Introductory lectures on automorphic forms, Princeton Univ. Press, 1973.

2. A zeta-function associated with zero ternary forms;Eie, Min King;Proc. Amer. Math. Soc.,1985

3. On the values at nonpositive integers of Siegel’s zeta functions of 𝑄-anisotropic quadratic forms with signature (1,𝑛-1);Kurihara, Akira;J. Fac. Sci. Univ. Tokyo Sect. IA Math.,1981

4. Lecture Notes in Mathematics;Namikawa, Yukihiko,1980

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time change for flows and thermodynamic formalism;Nonlinearity;2019-07-17

2. Spectral Analysis and Zeta Determinant on the Deformed Spheres;Communications in Mathematical Physics;2007-03-13

3. Zeta invariants for Dirichlet series;Pacific Journal of Mathematics;2006-03-01

4. Zeta-Functions Defined by Two Polynomials;Developments in Mathematics;2002

5. On zeta functions associated with polynomials;Bulletin of the Australian Mathematical Society;2000-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3