Asymptotic depth and connectedness in projective schemes

Author:

Brodmann M.

Abstract

Let I m I \subseteq \mathfrak {m} be an ideal of a local noetherian ring ( R , m ) \left ( {R,\mathfrak {m}} \right ) . Consider the exceptional fiber π 1 ( V ( 1 ) ) {\pi ^{ - 1}}\left ( {V\left ( 1 \right )} \right ) of the blowing-up morphism \[ π : Proj ( n 0 I n ) Spec ( R ) \pi :\operatorname {Proj}\left ( {{ \oplus _{n \geq 0}}{I^n}} \right ) \to \operatorname {Spec}\left ( R \right ) \] and the special fiber π 1 ( m ) {\pi ^{ - 1}}\left ( \mathfrak {m} \right ) . We show that the complement set \[ π 1 ( V ( I ) ) π 1 ( m ) {\pi ^{ - 1}}\left ( {V\left ( I \right )} \right ) - {\pi ^{ - 1}}\left ( \mathfrak {m} \right ) \] is highly connected if the asymptotic depth of the higher conormal modules I n / I n + 1 {I^n}/{I^{n + 1}} is large.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Asymptotic stability of 𝐴𝑠𝑠(𝑀/𝐼ⁿ𝑀);Brodmann, M.;Proc. Amer. Math. Soc.,1979

2. The asymptotic nature of the analytic spread;Brodmann, M.;Math. Proc. Cambridge Philos. Soc.,1979

3. Some remarks on blow-up and conormal cones;Brodmann, M.,1983

4. Rees rings and form rings of almost complete intersections;Brodmann, Markus;Nagoya Math. J.,1982

5. A few remarks on blowing-up and connectedness;Brodmann, M.;J. Reine Angew. Math.,1986

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An effective avoidance principle for a class of ideals;Mathematische Zeitschrift;2017-08-09

2. Analytic spread and non-vanishing of asymptotic depth;Mathematical Proceedings of the Cambridge Philosophical Society;2017-03-08

3. Powers of Ideals: Betti Numbers, Cohomology and Regularity;Commutative Algebra;2012-12-16

4. Powers of Componentwise Linear Ideals;Combinatorial Aspects of Commutative Algebra and Algebraic Geometry;2011

5. Bass Numbers in the Graded Case, a-Invariant Formulas, and an Analogue of Faltings' Annihilator Theorem;Journal of Algebra;1999-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3