On the fixed point index of iterates of planar homeomorphisms

Author:

Brown Morton

Abstract

If f f is an orientation preserving homeomorphism of the plane with an isolated fixed point at the origin 0 and index( f , 0 ) =  p {\text {index(}}f,0{\text {) = }}p , then index( f n ,0) {\text {index(}}{f^n}{\text {,0)}} is always well defined provided that p 1 p \ne 1 . In this case, for each n 0 n \ne 0 , index( f n ,0) = index( f , o ) =  p {\text {index(}}{f^n}{\text {,0) = index(}}f,o{\text {) = }}p . If index( f , 0 ) = 1 {\text {index(}}f,0{\text {) = 1}} , then there is an integer p p (possibly p = 1 p = 1 ) such that for those values of n n for which index( f n ,0) {\text {index(}}{f^n}{\text {,0)}} is defined (i.e 0 is an isolated fixed point of f n {f^n} ), index( f n ,0) = 1 {\text {index(}}{f^n}{\text {,0) = 1}} or index( f n ,0) =  p {\text {index(}}{f^n}{\text {,0) = }}p .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. A new proof of Brouwer’s lemma on translation arcs;Brown, Morton;Houston J. Math.,1984

2. Homeomorphisms of two-dimensional manifolds;Brown, M.;Houston J. Math.,1985

3. Proof of the Poincaré-Birkhoff fixed point theorem;Brown, M.;Michigan Math. J.,1977

4. L’espace des homéomorphismes du plan qui admettent un seul point fixe d’indice donné est connexe par arcs;Schmitt, Bruno V.;Topology,1979

5. A remark on the Lefschetz fixed point formula for differentiable maps;Shub, M.;Topology,1974

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dold sequences, periodic points, and dynamics;Bulletin of the London Mathematical Society;2021-07-15

2. Fixed point indices of iterates of a low-dimensional diffeomorphism at a fixed point which is an isolated invariant set;Archiv der Mathematik;2018-04-20

3. Periodic points of the planar area preserving Poincaré map inside isolating segment;Journal of Mathematical Analysis and Applications;2017-11

4. Fixed point indices of planar continuous maps;Discrete & Continuous Dynamical Systems - A;2015

5. Fixed point theorem for non-self maps of regions in the plane;Topology and its Applications;2013-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3