On the Lu Qi-keng conjecture

Author:

Suita Nobuyuki,Yamada Akira

Abstract

We shall give a complete answer to the Lu Qi-keng conjecture for finite Riemann surfaces. Our result is that every finite Riemann surface which is not simply-connected is never a Lu Qi-keng domain, i.e. the Bergman kernel K ( z , t ) K(z,t) of it has zeros for suitable t t ’s.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference4 articles.

1. On Kaehler manifolds with constant curvature;Lu, Q.-k.;Chinese Math.--Acta,1966

2. On the zeros of the Bergman function in doubly-connected domains;Rosenthal, Paul;Proc. Amer. Math. Soc.,1969

3. The kernel function of an orthonormal system;Schiffer, Menahem;Duke Math. J.,1946

4. The invariant distance in the theory of pseudoconformal transformations and the Lu Qi-keng conjecture;Skwarczyński, M.;Proc. Amer. Math. Soc.,1969

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lu Qi-Keng Problem and Topological Properties of Zero Variety on the Thullen Domain;Frontiers of Mathematics;2023-07

2. Zero problems of the Bergman kernel function on the second type of Cartan-Hartogs domain;Complex Variables and Elliptic Equations;2023-03-28

3. Zero Problems of the Bergman Kernel Function on the First Type of Cartan-Hartogs Domain;Chinese Annals of Mathematics, Series B;2022-03

4. Bergman Kernels;Springer Monographs in Mathematics;2018

5. A Few Miscellaneous Topics;Springer Monographs in Mathematics;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3