We prove that any compact orientable hypersurface with boundary immersed (resp. embedded) in Euclidean space is regularly homotopic (resp. isotopic) to a hypersurface with principal directions which may have any prescribed homotopy type, and principal curvatures each of which may be prescribed to within an arbitrary small error of any constant. Further we construct regular homotopies (resp. isotopies) which control the principal curvatures and directions of hypersurfaces in a variety of ways. These results, which we prove by holonomic approximation, establish some h-principles in the sense of Gromov, and generalize theorems of Gluck and Pan on embedding and knotting of positively curved surfaces in 3-space.