Kirwan-Novikov inequalities on a manifold with boundary

Author:

Braverman Maxim,Silantyev Valentin

Abstract

We extend the Novikov Morse-type inequalities for closed 1-forms in 2 directions. First, we consider manifolds with boundary. Second, we allow a very degenerate structure of the critical set of the form, assuming only that the form is non-degenerated in the sense of Kirwan. In particular, we obtain a generalization of a result of Floer about the usual Morse inequalities on a manifold with boundary. We also obtain an equivariant version of our inequalities. Our proof is based on an application of the Witten deformation technique. The main novelty here is that we consider the neighborhood of the critical set as a manifold with a cylindrical end. This leads to a considerable simplification of the local analysis. In particular, we obtain a new analytic proof of the Morse-Bott inequalities on a closed manifold.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. S. Alesker and M. Braverman, Cohomology of a Hamiltonian T-space with involution, Preprint.

2. The Yang-Mills equations over Riemann surfaces;Atiyah, M. F.;Philos. Trans. Roy. Soc. London Ser. A,1983

3. The moment map and equivariant cohomology;Atiyah, M. F.;Topology,1984

4. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Berline, Nicole,1992

5. The Witten complex and the degenerate Morse inequalities;Bismut, Jean-Michel;J. Differential Geom.,1986

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Morse Theory without Non-Degeneracy;The Quarterly Journal of Mathematics;2021-01-08

2. Cohomology of a Hamiltonian $T$-space with involution;Journal of Symplectic Geometry;2016

3. Morse–Bott inequalities in the presence of a compact Lie group action and applications;Differential Geometry and its Applications;2014-02

4. The Witten deformation for even dimensional conformally conic manifolds;Transactions of the American Mathematical Society;2012-07-02

5. A Morse complex on manifolds with boundary;Geometriae Dedicata;2010-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3