A general theory of almost convex functions

Author:

Dilworth S.,Howard Ralph,Roberts James

Abstract

Let Δ m = { ( t 0 , , t m ) R m + 1 : t i 0 , i = 0 m t i = 1 } \Delta _m=\{(t_0,\dots , t_m)\in \mathbf {R}^{m+1}: t_i\ge 0, \sum _{i=0}^mt_i=1\} be the standard m m -dimensional simplex and let S m = 1 Δ m \varnothing \ne S\subset \bigcup _{m=1}^\infty \Delta _m . Then a function h : C R h\colon C\to \mathbf {R} with domain a convex set in a real vector space is S S -almost convex iff for all ( t 0 , , t m ) S (t_0,\dots , t_m)\in S and x 0 , , x m C x_0,\dots , x_m\in C the inequality \[ h ( t 0 x 0 + + t m x m ) 1 + t 0 h ( x 0 ) + + t m h ( x m ) h(t_0x_0+\dots +t_mx_m)\le 1+ t_0h(x_0)+\cdots +t_mh(x_m) \] holds. A detailed study of the properties of S S -almost convex functions is made. If S S contains at least one point that is not a vertex, then an extremal S S -almost convex function E S : Δ n R E_S\colon \Delta _n\to \mathbf {R} is constructed with the properties that it vanishes on the vertices of Δ n \Delta _n and if h : Δ n R h\colon \Delta _n\to \mathbf {R} is any bounded S S -almost convex function with h ( e k ) 0 h(e_k)\le 0 on the vertices of Δ n \Delta _n , then h ( x ) E S ( x ) h(x)\le E_S(x) for all x Δ n x\in \Delta _n . In the special case S = { ( 1 / ( m + 1 ) , , 1 / ( m + 1 ) ) } S=\{(1/(m+1),\dotsc , 1/(m+1))\} , the barycenter of Δ m \Delta _m , very explicit formulas are given for E S E_S and κ S ( n ) = sup x Δ n E S ( x ) \kappa _S(n)=\sup _{x\in \Delta _n}E_S(x) . These are of interest, as E S E_S and κ S ( n ) \kappa _S(n) are extremal in various geometric and analytic inequalities and theorems.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convexity of the Integral Arithmetic Mean of a Convex Function;Rocky Mountain Journal of Mathematics;2010-06-01

2. Decomposition of higher-order Wright-convex functions;Journal of Mathematical Analysis and Applications;2009-11

3. Harpedonaptae and abstract convexity;Journal of Applied and Industrial Mathematics;2008-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3