The super order dual of an ordered vector space and the Riesz–Kantorovich formula

Author:

Aliprantis Charalambos,Tourky Rabee

Abstract

A classical theorem of F. Riesz and L. V. Kantorovich asserts that if L L is a vector lattice and f f and g g are order bounded linear functionals on L L , then their supremum (least upper bound) f g f\lor g exists in L L^\sim and for each x L + x\in L_+ it satisfies the so-called Riesz–Kantorovich formula: \[ [ f g ] ( x ) = sup { f ( y ) + g ( z ) :   y , z L +   a n d   y + z = x } . \bigl [f\lor g\bigr ](x)=\sup \bigl \{f(y)+g(z)\colon \ y,z\in L_+\ \,\mathrm {and}\ \, y+z=x\bigr \}\,. \] Related to the Riesz–Kantorovich formula is the following long-standing problem: If the supremum of two order bounded linear functionals f f and g g on an ordered vector space exists, does it then satisfy the Riesz–Kantorovich formula?

In this paper, we introduce an extension of the order dual of an ordered vector space and provide some answers to this long-standing problem. The ideas regarding the Riesz–Kantorovich formula owe their origins to the study of the fundamental theorems of welfare economics and the existence of competitive equilibrium. The techniques introduced here show that the existence of decentralizing prices for efficient allocations is closely related to the above-mentioned problem and to the properties of the Riesz–Kantorovich formula.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference31 articles.

1. Injective hulls of normed lattices;Abramovič, Ju. A.;Dokl. Akad. Nauk SSSR,1971

2. When each continuous operator is regular;Abramovich, Yuri A.,1990

3. On a question of Fremlin concerning order bounded and regular operators;Abramovič, Ju. A.;Colloq. Math.,1982

4. Regular operators from and into a small Riesz space;Abramovich, Y. A.;Indag. Math. (N.S.),1991

5. The regularity of order bounded operators into 𝐶(𝐾). II;Abramovich, Y. A.;Quart. J. Math. Oxford Ser. (2),1993

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3