Zeros of Stieltjes and Van Vleck polynomials

Author:

Alam Mahfooz

Abstract

The study of the polynomial solutions of the generalized Lamé differential equation gives rise to Stieltjes and Van Vleck polynomials. Marden has, under quite general conditions, established varied generalizations of the results proved earlier by Stieltjes, Van Vleck, Bocher, Klein, and, Pólya, concerning the location of the zeros of such polynomials. We study the corresponding problem for yet another form of the generalized Lamé differential equation and generalize some recent results due to Zaheer and to Alam. Furthermore, applications of our results to the standard form of this differential equation immediately furnish the corresponding theorems of Marden. Consequently, our main theorem of this paper may be considered as the most general result obtained thus far in this direction.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. M. Bocher, Über die Reihenentwickelungen der Potentialtheoreie, Teubner, Leipzig, 1894, pp. 215-218.

2. E. Heine, Handbuch der Kugelfunctionen, Bd. I (2nd ed.), G. Reimer, Berlin, 1878, pp. 472-476.

3. F. Klein, Über lineare Differentialgleichungen der zweiten Ordnung, Göttingen, 1894, pp. 211-218.

4. F. Lucas, Propriétés géométriques des fractions rationnelles, C. R. Acad. Sci. Paris 77 (1874), 431-433; ibid. 78 (1874), 140-144; ibid. 78 (1874), 180-183; ibid. 78 (1874), 271-274.

5. Mathematical Surveys, No. 3;Marden, Morris,1966

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FQHE and tt* geometry;Journal of High Energy Physics;2019-12

2. Critical Measures, Quadratic Differentials, and Weak Limits of Zeros of Stieltjes Polynomials;Communications in Mathematical Physics;2011-01-08

3. Choquet order for spectra of higher Lamé operators and orthogonal polynomials;Journal of Approximation Theory;2008-04

4. Electrostatic models for zeros of polynomials: Old, new, and some open problems;Journal of Computational and Applied Mathematics;2007-10

5. Asymptotic Properties of Heine–Stieltjes and Van Vleck Polynomials;Journal of Approximation Theory;2002-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3