Generation and propagation of interfaces in reaction-diffusion systems

Author:

Chen Xinfu

Abstract

This paper is concerned with the asymptotic behavior, as ε 0 \varepsilon \searrow 0 , of the solution ( u ε , v ε ) ({u^\varepsilon },{v^\varepsilon }) of the second initial-boundary value problem of the reaction-diffusion system: \[ { u t ε ε Δ u ε = 1 ε f ( u ε , υ ε ) 1 ε [ u ε ( 1 u ε 2 ) υ ε ] , υ t ε Δ υ ε = u ε γ υ ε \left \{ {\begin {array}{*{20}{c}} {u_t^\varepsilon - \varepsilon \Delta {u^\varepsilon } = \frac {1}{\varepsilon }f({u^\varepsilon },{\upsilon ^\varepsilon }) \equiv \frac {1}{\varepsilon }[{u^\varepsilon }(1 - {u^{\varepsilon 2}}) - {\upsilon ^\varepsilon }],} \hfill \\ {\upsilon _t^\varepsilon - \Delta {\upsilon ^\varepsilon } = {u^\varepsilon } - \gamma {\upsilon ^\varepsilon }} \hfill \\ \end {array} } \right . \] where γ > 0 \gamma > 0 is a constant. When v ( 2 3 / 9 , 2 3 / 9 ) v \in ( - 2\sqrt 3 /9,2\sqrt 3 /9) , f f is bistable in the sense that the ordinary differential equation u t = f ( u , v ) {u_t} = f(u,v) has two stable solutions u = h ( v ) u = {h_ - }(v) and u = h + ( v ) u = {h_ + }(v) and one unstable solution u = h 0 ( v ) u = {h_0}(v) , where h ( v ) , h 0 ( v ) {h_ - }(v), {h_0}(v) , and h + ( v ) {h_ + }(v) are the three solutions of the algebraic equation f ( u , v ) = 0 f(u,v) = 0 . We show that, when the initial data of v v is in the interval ( 2 3 / 9 , 2 3 / 9 ) ( - 2\sqrt 3 /9,2\sqrt 3 /9) , the solution ( u ε , v ε ) ({u^\varepsilon },{v^\varepsilon }) of the system tends to a limit ( u , v ) (u,v) which is a solution of a free boundary problem, as long as the free boundary problem has a unique classical solution. The function u u is a "phase" function in the sense that it coincides with h + ( v ) {h_ + }(v) in one region Ω + {\Omega _ + } and with h ( v ) {h_ - }(v) in another region Ω {\Omega _ - } . The common boundary (free boundary or interface) of the two regions Ω {\Omega _ - } and Ω + {\Omega _ + } moves with a normal velocity equal to V ( v ) \mathcal {V}(v) , where V ( ) \mathcal {V}( \bullet ) is a function that can be calculated. The local (in time) existence of a unique classical solution to the free boundary problem is also established. Further we show that if initially u ( , 0 ) h 0 ( v ( , 0 ) ) u( \bullet , 0) - {h_0}(v( \bullet , 0)) takes both positive and negative values, then an interface will develop in a short time O ( ε | ln ε | ) O(\varepsilon |\ln \varepsilon |) near the hypersurface where u ( x , 0 ) h 0 ( v ( x , 0 ) ) = 0 u(x,0) - {h_0}(v(x,0)) = 0 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference32 articles.

1. S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing, Acta Metall. 27 (1979), 1084-1095.

2. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation;Aronson, D. G.,1975

3. Multidimensional nonlinear diffusion arising in population genetics;Aronson, D. G.;Adv. in Math.,1978

4. G. Barles, Remarks on a flame propagation model, Rapport INRIA, #464, 1985.

5. Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics;Bronsard, Lia;J. Differential Equations,1991

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hyperbolic-elliptic-parabolic PDE model of chemotactic E. coli colonies;Journal of Mathematical Analysis and Applications;2024-03

2. Generation and Motion of Interfaces in a Mass-Conserving Reaction-Diffusion System;SIAM Journal on Applied Dynamical Systems;2023-08-14

3. Learning phase field mean curvature flows with neural networks;Journal of Computational Physics;2022-12

4. Type-0 singularities in the network flow – Evolution of trees;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-09-29

5. Global existence and uniqueness of solutions for one-dimensional reaction-interface systems;Journal of Differential Equations;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3