Normal form and linearization for quasiperiodic systems

Author:

Chow Shui-Nee,Lu Kening,Shen Yun Qiu

Abstract

In this paper, we consider the following system of differential equations: \[ θ ˙ = ω + Θ ( θ , z ) , z ˙ = A z + f ( θ , z ) , \dot \theta = \omega + \Theta (\theta ,z), \quad \dot z = Az + f(\theta ,z), \] where θ C m \theta \in {C^m} , ω = ( ω 1 , , ω m ) R m \omega = ({\omega _1}, \ldots ,{\omega _m}) \in {R^m} , z C n z \in {C^n} , A A is a diagonalizable matrix, f f and Θ \Theta are analytic functions in both variables and 2 π 2\pi -periodic in each component of the vector θ , Θ = O ( | z | ) \theta ,\Theta = O(|z|) and f = O ( | z | 2 ) f = O(|z{|^2}) as z 0 z \to 0 . We study the normal form of this system of the equations and prove that this system can be transformed to a system of linear equations \[ θ ˙ = ω , z ˙ = A z \dot \theta = \omega , \quad \dot z = Az \] by an analytic transformation provided that the eigenvalues of A A and the frequency ω \omega satisfy certain small-divisor conditions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Arnol′d, V. I.,1983

2. The reducibility of a system of ordinary differential equations in the neighborhood of a conditionally periodic motion;Belaga, È. G.;Dokl. Akad. Nauk SSSR,1962

3. B. L. J. Braaksma and H. W. Broer, On a quasi-periodic Hopf bifurcation, Ann. Inst. Henri Poincaré4 (1987), 115-168.

4. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Chow, Shui Nee,1982

5. Applied Mathematical Sciences;Guckenheimer, John,1983

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NORMAL FORMS OF NILPOTENT SYSTEM IN <inline-formula><tex-math id="M1">$ \mathbb{C}^{2}\times\mathbb{C}^{2}$</tex-math></inline-formula>;Journal of Applied Analysis & Computation;2023

2. The Gevrey normalization for quasi-periodic systems under Siegel type small divisor conditions;Journal of Differential Equations;2023-01

3. Reduction Techniques;Frontiers in Applied Dynamical Systems: Reviews and Tutorials;2023

4. Comments on Poincaré theorem for quasi-periodic systems;Communications on Pure and Applied Analysis;2022

5. A Siegel theorem for periodic difference systems;Journal of Difference Equations and Applications;2021-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3