The structure of the space of coadjoint orbits of an exponential solvable Lie group

Author:

Currey Bradley N.

Abstract

In this paper we address the problem of describing in explicit algebraic terms the collective structure of the coadjoint orbits of a connected, simply connected exponential solvable Lie group G G . We construct a partition \wp of the dual g {\mathfrak {g}^{\ast } } of the Lie algebra g \mathfrak {g} of G G into finitely many Ad ( G ) \operatorname {Ad}^{\ast } (G) -invariant algebraic sets with the following properties. For each Ω \Omega \in \wp , there is a subset Σ \Sigma of Ω \Omega which is a cross-section for the coadjoint orbits in Ω \Omega and such that the natural mapping Ω / Ad ( G ) Σ \Omega /\operatorname {Ad}^{\ast } (G) \to \Sigma is bicontinuous. Each Σ \Sigma is the image of an analytic Ad ( G ) \operatorname {Ad}^{\ast }(G) -invariant function P P on Ω \Omega and is an algebraic subset of g {\mathfrak {g}^{\ast }} . The partition \wp has a total ordering such that for each Ω \Omega \in \wp , { Ω : Ω Ω } \cup \{ \Omega \prime :\Omega \prime \leq \Omega \} is Zariski open. For each Ω \Omega there is a cone W g W \subset {\mathfrak {g}^{\ast } } , such that Ω \Omega is naturally a fiber bundle over Σ \Sigma with fiber W W and projection P P . There is a covering of Σ \Sigma by finitely many Zariski open subsets O O such that in each O O , there is an explicit local trivialization Θ : P 1 ( O ) W × O \Theta :{P^{ - 1}}(O) \to W \times O . Finally, we show that if Ω \Omega is the minimal element of \wp (containing the generic orbits), then its cross-section Σ \Sigma is a differentiable submanifold of g {\mathfrak {g}^{\ast } } . It follows that there is a dense open subset U U of G ^ G\hat \emptyset such that U U has the structure of a differentiable manifold and G ^ U G\widehat \emptyset \sim U has Plancherel measure zero.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Dual topology of a nilpotent Lie group;Brown, Ian D.;Ann. Sci. \'{E}cole Norm. Sup. (4),1973

2. Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups;Corwin, L.;Trans. Amer. Math. Soc.,1987

3. On the dual of an exponential solvable Lie group;Currey, Bradley N.;Trans. Amer. Math. Soc.,1988

4. The structure of the space of co-adjoint orbits of a completely solvable Lie group;Currey, Bradley N.;Michigan Math. J.,1989

5. Sur l’analyse harmonique sur les groupes de Lie résolubles;Duflo, Michel;Ann. Sci. \'{E}cole Norm. Sup. (4),1976

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variants of Plancherel Formulas for Monomial Representations of Exponential Solvable Lie Groups;Springer Monographs in Mathematics;2021

2. Branching Laws and the Multiplicity Function of Unitary Representations of Exponential Solvable Lie Groups;Springer Monographs in Mathematics;2021

3. Index;Representations of Solvable Lie Groups;2020-04-16

4. Bibliography;Representations of Solvable Lie Groups;2020-04-16

5. Plancherel formula and related topics;Representations of Solvable Lie Groups;2020-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3