Global dimension of tiled orders over a discrete valuation ring

Author:

Jategaonkar Vasanti A.

Abstract

Let R be a discrete valuation ring with maximal ideal m \mathfrak {m} and the quotient field K. Let Λ = ( m λ i j ) M n ( K ) \Lambda = ({\mathfrak {m}^{{\lambda _{ij}}}}) \subseteq {M_n}(K) be a tiled R-order, where λ i j Z {\lambda _{ij}} \in {\mathbf {Z}} and λ i i = 0 {\lambda _{ii}} = 0 for 1 i n 1 \leq i \leq n . The following results are proved. Theorem 1. There are, up to conjugation, only finitely many tiled R-orders in M n ( K ) {M_n}(K) of finite global dimension. Theorem 2. Tiled R-orders in M n ( K ) {M_n}(K) of finite global dimension satisfy DCC. Theorem 3. Let Λ M n ( R ) \Lambda \subseteq {M_n}(R) and let Γ \Gamma be obtained from Λ \Lambda by replacing the entries above the main diagonal by arbitrary entries from R. If Γ \Gamma is a ring and if gl dim Λ > \dim \;\Lambda > \infty , then gl dim Γ > \dim \;\Gamma > \infty . Theorem 4. Let Λ \Lambda be a tiled R-order in M 4 ( K ) {M_4}(K) . Then gl dim Λ > \dim \;\Lambda > \infty if and only if Λ \Lambda is conjugate to a triangular tiled R-order of finite global dimension or is conjugate to the tiled R-order Γ = ( m λ i j ) M 4 ( R ) \Gamma = ({\mathfrak {m}^{{\lambda _{ij}}}}) \subseteq {M_4}(R) , where γ i i = γ 1 i = 0 {\gamma _{ii}} = {\gamma _{1i}} = 0 for all i, and γ i j = 1 {\gamma _{ij}} = 1 otherwise.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. Maximal orders;Auslander, Maurice;Trans. Amer. Math. Soc.,1960

2. Pure and Applied Mathematics, Vol. XI;Curtis, Charles W.,1962

3. Examples of orders over discrete valuation rings;Fields, K. L.;Math. Z.,1969

4. Global dimension of triangular orders over a discrete valuation ring;Jategaonkar, Vasanti A.;Proc. Amer. Math. Soc.,1973

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The cone of quasi-semimetrics and exponent matrices of tiled orders;Discrete Mathematics;2022-01

2. Orders and polytropes: matrix algebras from valuations;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2021-10-19

3. Projective lattices of tiled orders;Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics;2018

4. The max-plus algebra of exponent matrices of tiled orders;Journal of Algebra;2017-11

5. Minimal tiled orders of finite global dimension;Archiv der Mathematik;2017-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3