Injective modules and localization in noncommutative Noetherian rings

Author:

Jategaonkar Arun Vinayak

Abstract

Let S \mathfrak {S} be a semiprime ideal in a right Noetherian ring R and C ( S ) = { c R | [ c + S \mathcal {C}(\mathfrak {S}) = \{ c \in R|[c + \mathfrak {S} regular in R / S } R/\mathfrak {S}\} . We investigate the following two conditions: ( A ) C ( S ) ({\text {A}})\;\mathcal {C}(\mathfrak {S}) is a right Ore set in R. ( B ) C ( S ) ({\text {B}})\;\mathcal {C}(\mathfrak {S}) is a right Ore set in R and the right ideals of R S {R_{\mathfrak {S}}} , the classical right quotient ring of R w.r.t. C ( S ) \mathcal {C}(\mathfrak {S}) are closed in the J ( R S ) J({R_{\mathfrak {S}}}) -adic topology. The main results show that conditions (A) and (B) can be characterized in terms of the injective hull of the right R-module R / S R/\mathfrak {S} . The J-adic completion of a semilocal right Noetherian ring is also considered.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Modules finite over endomorphism ring;Faith, Carl,1972

2. Localization in non-commutative noetherian rings;Goldie, A. W.;J. Algebra,1967

3. The structure of Noetherian rings;Goldie, Alfred W.,1972

4. Rings and modules of quotients;Goldman, Oscar;J. Algebra,1969

5. A counter-example in ring theory and homological algebra;Jategaonkar, Arun Vinayak;J. Algebra,1969

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monoform objects and localization theory in abelian categories;Journal of Homotopy and Related Structures;2017-09-06

2. Module extensions and the second layer condition;Communications in Algebra;1992-01

3. Localization at collections of minimal primes;Journal of Algebra;1988-11

4. References;Ring Theory;1988

5. References;Ring Theory;1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3