𝐿^{𝑝} estimates for nonvariational hypoelliptic operators with 𝑉𝑀𝑂 coefficients

Author:

Bramanti Marco,Brandolini Luca

Abstract

Let X 1 , X 2 , , X q X_1,X_2,\ldots ,X_q be a system of real smooth vector fields, satisfying Hörmander’s condition in some bounded domain Ω R n \Omega \subset \mathbb {R}^n ( n > q n>q ). We consider the differential operator L = i = 1 q a i j ( x ) X i X j , \begin{equation*} \mathcal {L}=\sum _{i=1}^qa_{ij}(x)X_iX_j, \end{equation*} where the coefficients a i j ( x ) a_{ij}(x) are real valued, bounded measurable functions, satisfying the uniform ellipticity condition: μ | ξ | 2 i , j = 1 q a i j ( x ) ξ i ξ j μ 1 | ξ | 2 \begin{equation*} \mu |\xi |^2\leq \sum _{i,j=1}^qa_{ij}(x)\xi _i\xi _j\leq \mu ^{-1}|\xi |^2 \end{equation*} for a.e. x Ω x\in \Omega , every ξ R q \xi \in \mathbb {R}^q , some constant μ \mu . Moreover, we assume that the coefficients a i j a_{ij} belong to the space VMO (“Vanishing Mean Oscillation”), defined with respect to the subelliptic metric induced by the vector fields X 1 , X 2 , , X q X_1,X_2,\ldots ,X_q . We prove the following local L p \mathcal {L}^p -estimate: X i X j f L p ( Ω ) c { L f L p ( Ω ) + f L p ( Ω ) } \begin{equation*} \left \|X_iX_jf\right \|_{\mathcal {L}^p(\Omega ’)}\leq c\left \{\left \|\mathcal {L}f\right \|_{\mathcal {L}^p(\Omega )}+\left \|f\right \|_{\mathcal {L}^p(\Omega )}\right \} \end{equation*} for every Ω Ω \Omega ’\subset \subset \Omega , 1 > p > 1>p>\infty . We also prove the local Hölder continuity for solutions to L f = g \mathcal {L}f=g for any g L p g\in \mathcal {L}^p with p p large enough. Finally, we prove L p \mathcal {L}^p -estimates for higher order derivatives of f f , whenever g g and the coefficients a i j a_{ij} are more regular.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference40 articles.

1. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I;Agmon, S.;Comm. Pure Appl. Math.,1959

2. Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés;Bony, Jean-Michel;Ann. Inst. Fourier (Grenoble),1969

3. Commutators of integral operators with positive kernels;Bramanti, Marco;Matematiche (Catania),1994

4. M. Bramanti-L. Brandolini: ℒ^{𝓅}-estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups. Preprint.

5. 𝑊_{𝑝}^{1,2} solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients;Bramanti, Marco;Comm. Partial Differential Equations,1993

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3